Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Calxeda gears up for server ARM race--( EnergyCore Processors )
The Register ^ | 16th November 2010 05:00 GMT | Timothy Prickett Morgan

Posted on 04/23/2012 12:29:41 PM PDT by Ernest_at_the_Beach

SC10 The secretive ARM server startup formerly known as Smooth-Stone and now called Calxeda is coming out a bit today at the SC10 supercomputer trade show in New Orleans. But don't get too excited. The company is not talking about specific chip or server designs based on the ARM RISC architecture, but rather giving potential customers in the HPC world and in the general purpose server racket the design goals it has set for its initial products.

Calxeda is a fake name, and one that Barry Evans, the founder of Smooth-Stone had to change because someone else owns that name. The "smooth stone" in the company's original name refers to the round rock (not to be confused with Dell) that David slew Goliath with using his slingshot. It is pronounced "cal-zay-duh," not "cal-zon-ee," and the X in there is an intentional tweak on the x86 and x64 used to designate Intel and compatible processors.

Evans founded what is now called Calxeda in January 2008 with Larry Wikelius, who was at Opteron server maker Newisys, which sparked to life and generated $450m in server revenues before going the way of all flesh, and David Borland, who has been in charge of chip designs at Marvell, Intel, and AMD. Evans ran Intel's low-power x86 and Xscale ARM chip businesses.

Intel acquired the StrongARM RISC processor business from failing Digital Equipment Corp in 1998, and in 2006, it sold off that XScale business to chip maker Marvell for $600m - a move it may eventually regret with Marvell and others like Calxeda working on multicore ARM chips aimed squarely at server workloads. Evans is the chief executive officer at Calxeda, while Wikelius is vice president of software engineering and Borland is vice president of hardware engineering.

Back in August, Calxeda raked in $48m in funding from tech partners ARM Holdings, Advanced Technology Investment Company, Texas Instruments as well as venture capitalists Battery Ventures, Flybridge Capital Partners, and Highland Capital Partners. ARM Holdings is the holding company that licenses the ARM chip architecture that has myriad designs (used on mobile phones and other portable computing devices where battery power drives the design).

ATIC is the investment arm of the Abu Dhabi government that bought the foundry business from Intel nemesis Advanced Micro Devices last year, creating GlobalFoundries. TI is an ARM chip maker in its own right already and is getting out of the fab business (which is why Taiwan Semiconductor Manufacturing Corp is making Oracle's latest Sparc T3 chips and not TI, which fabbed Sparc chips for Sun Microsystems for decades).

Now that Calxeda has some cash, it has a new office in Austin, Texas, and it's hiring more engineers as well as an executive team to help it make and push its products once they are ready for market. To that end, Calxeda has hired Steve Beatty to be vice president of manufacturing at the chip startup; he was previously reponsible for production at chip maker SigmaTel up through its initial public offering in 2003 and up through its acquisition by Freescale Semiconductor in 2008.

Bob Baughman has been hired by Calxeda to be vice president of business development and sales. Baughman was previously vice president of product management for the $700m video solutions group at Ploycom and managed the company's partnership with Microsoft; he also held positions at Marvell and Intel, and came to Intel when the chip giant bought Dialogic in 1999 (the media and signaling chip maker was spun back out of Intel in 2006).

The final new member to the executive team is Karl Fruend, who cut his teeth on the Hewlett-Packard workstation business, did marketing for Cray Research before that company was sold to a prior incarnation of Silicon Graphics. Freund is vice president of marketing for Calxeda, and has spent the past ten years working at IBM, first in charge of marketing for its Tivoli systems management software, then its AIX servers, and most recently its System z mainframes.


TOPICS: Business/Economy; Computers/Internet
KEYWORDS: armserver; hitech

1 posted on 04/23/2012 12:29:53 PM PDT by Ernest_at_the_Beach
[ Post Reply | Private Reply | View Replies]

To: All
Moving forward in Time,.,,,,

Calxeda hurls EnergyCore ARM at server chip Goliaths

*****************************************************

By Timothy Prickett Morgan

1st November 2011 16:45 GMT

Calxeda, formerly known as Smooth-Stone in reference to the river rock that the mythical David used in his sling to slay Goliath, doesn't think the server racket can wait for the 64-bit ARMv8 architecture (announced late last week) to be designed and tested in the next few years.

And that is why Calxeda has spent the past several years tweaking the 32-bit ARMv7 core to come up with its own system-on-chip (SoC) and related interconnect fabric suitable for hyperscale parallel and distributed computing where nodes have only modest memory needs.

Today, Calxeda takes the wraps off its much-anticipated ARM server processor, which has been given the name EnergyCore in reference to the fact that like other ARM chips used in smartphones and tablets, it is focused on doing computing work for the least amount of energy possible. The idea is that by switching to ARM cores, Calxeda can do a unit of computing work burning less juice than an x86 chip from Intel or Advanced Micro Devices, the Power chip from IBM, the Sparc T from Oracle, or the Itanium from Intel.

Calxeda logo

The EnergyCore ECX-1000 Series chips, as the first EnergyCores will be called, are based on the Cortex-A9 designs from ARM Holdings. The ECX-1000 chips are in fact based on a quad-core implementation of the Cortex-A9 chip, but like other server implementations of the ARM chips, such as the X-Gene announced last week by Applied Micro Circuits, there is a lot more to these chips than the core.

There is a slew of other stuff, including a fabric interconnect and a management controller that would otherwise be an add-on for the system board, on the chip. One big difference between the EnergyCore and X-Gene is that the latter is based on the 64-bit ARMv8 and won't ship until the second half of next year if all goes well at Applied Micro. And that will be early silicon. It remains to be seen when server makers will pick up the X-Gene chip and actually get it into servers, but that might take until 2013.

Calxeda thinks there's money to be made now, and for some workloads, the EnergyCore chips are going to fit the power bill. "ARM does for the processor world what Linux did for the operating system world," Karl Freund, vice president of marketing at Calxeda, tells El Reg. "It opens up the chip market to a whole lot of innovation."

The ECX-1000 chips are implemented in a 40 nanometer process and are manufactured by Taiwan Semiconductor Manufacturing Corp, which seems to be the foundry of choice for server chip makers that don't have their own wafer baking facilities. Each Cortex-A9 core runs at 1.1GHz or 1.4GHz and includes a scalar floating point unit that can do single-precision or double-precision operations as well as a NEON SIMD media processing unit that has 64-bit and 128-bit registers and that can also do floating point ops.

The EnergyCore implements ARM's TrustedZone security partitioning capabilities, just like other ARMv7 cores. Each core on the ESX-1000 chip has its own power domain, which means it can be turned on and off as needed or not to conserve power and reduce heat dissipation.

Calxeda EnergyCore chip

The Calxeda ECX-1000 ARM server chip

Each Cortex-A9 core in the ECX-1000 chip has 32KB of L1 data cache and 32KB of L1 instruction cache each, plus a 4MB L2 cache that is shared across those four cores. These cores have an eight-stage pipeline and can do out-of-order execution as is traditional for modern x86 and RISC processors.

Incidentally, the Cortex-A9 reference designs support from 16KB to 64KB of total L1 cache with up to 8MB of L2 cache spread across those cores and clock speeds as high as 2GHz. The cores process 32-bit instructions, but have a 64-bit data path to memory with another 8 bits for ECC data correction for a total of 72 bits. The ECX-1000 has a DDR3 memory controller that can support regular 1.5-volt DDR3 main memory or the 1.35-volt DDR3 low-power memory; 800MHz, 1.06GHz, and 1.33GHz memory speeds are supported.

Here's a block diagram of the other goodies that are baked into the ECX-1000 ARM chips:

Calxeda EnergyCore block diagram

Block diagram of the Calxeda EnergyCore SoC (click to enlarge)

The ECX-1000 has four PCI-Express 2.0 controllers and one PCI-Express 1.0 controller and they can support up to two x8 lanes and four x1, x2, and x4 lanes. It also has an integrated Secure Digital/enhanced MultiMediaCard (SD/eMMC) controller on the chip. The chip also has a SATA 2.0 controller capable of supporting up to five 3Gb/sec ports; older 1.5Gb/sec SATA devices are compatible with this controller, but newer 6Gb/sec peripherals are not.

The ECX-1000 also sports what Calxeda calls the EnergyCore Management Engine, which is akin to a baseboard management controller (BMC) in a server motherboard to provide out-of-band management for the processors and peripherals in the system. According to Karl Freund, vice president of marketing at Calxeda, these on-board BMCs burn anywhere from one to four watts of juice and have an average manufacturing cost of $28 per node, so integrating this on the chip cuts down on both power consumption and costs for large-scale server clusters.

This integrated management controller on the chip manages secure booting for the ARM cores, supports the IMPI 2.0 and DCMI management protocols, does dynamic power management and power capping, and provides a remote console over the serial-over-LAN (hilariously abbreviated SoL) protocol.

This on-chip control freak has one other very important job: configuring and optimizing the bandwidth allocated between the ECX-1000 cores and the EnergyCore Fabric Switch that is also etched onto the chips. Yup, not only is the ECX-1000 a quad-core chip with integrated controllers, it has its own switches. Bitch.

2 posted on 04/23/2012 12:35:21 PM PDT by Ernest_at_the_Beach (The Global Warming HOAX is about Global Governance)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce

Heard of this one?


3 posted on 04/23/2012 12:36:38 PM PDT by Ernest_at_the_Beach (The Global Warming HOAX is about Global Governance)
[ Post Reply | Private Reply | To 2 | View Replies]

To: All
Point of this post is to show that the computing world is changing a bit....

Will post another very interesting mote on another company.,

4 posted on 04/23/2012 12:39:18 PM PDT by Ernest_at_the_Beach (The Global Warming HOAX is about Global Governance)
[ Post Reply | Private Reply | To 3 | View Replies]

To: All
And we have:

HP Plans Low-Power Servers Using Calxeda ARM Chips

That was November 01, 2011 04:13 PM

5 posted on 04/23/2012 12:54:11 PM PDT by Ernest_at_the_Beach (The Global Warming HOAX is about Global Governance)
[ Post Reply | Private Reply | To 4 | View Replies]

To: Ernest_at_the_Beach
Excerpt from info linked at #5:

***************************************EXCERPT***************************************

On the contrary, they will not be able to run Windows, only Cannonical and Red Hat Linux.

6 posted on 04/23/2012 12:57:00 PM PDT by Ernest_at_the_Beach (The Global Warming HOAX is about Global Governance)
[ Post Reply | Private Reply | To 5 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson