Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Awesome HD Slinky Slow-Mo…Does Gravity Really Work Like We Think It Does?
Veritasium ^ | Sept 29, 2012 | Jim Caldwell

Posted on 10/04/2012 4:04:07 PM PDT by jwsea55

Watching this video, I have to ask, do we really understand gravity? When we release an object from our hands, it falls. Right? Not always? Or at least, not right away?

Veritasium has put some pretty cool videos to explain how science and physics work. They have been working with slinkies on a number of videos (and you thought your kid didn’t have any potential at 3 years old), this video seems to capture the essences of their work.

So listening to a couple of science guys explain this, does this give one a solid enough understanding why that darn bottom of the slinky doesn’t move? OK, I get the propagating communication of information thing, and that gravity has a constant force on the center of gravity but when I step back from all that, why doesn’t that slinky’s bottom move? Jim Caldwell


TOPICS: Arts/Photography; Miscellaneous; Science
KEYWORDS: gravity; physics; slinky; veritasium
Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-8081-84 next last
To: jwsea55

Looks like the folks at Looney Toons understood gravity, with some help from Wylie Coyote.


21 posted on 10/04/2012 5:28:19 PM PDT by rabidralph
[ Post Reply | Private Reply | To 1 | View Replies]

To: Talisker

It would seem that the easiest way to envision this is to realize that the entire Slinky has not been released all at once. That is, the top has been released but the tension in the Slinky continues to hold the bottom up as though the bottom was never released at all. This occurs UNTIL the Slinky contracts enough that there is inadequate tension to hold the bottom up any longer. Then the whole thing falls.


22 posted on 10/04/2012 5:29:13 PM PDT by johniegrad
[ Post Reply | Private Reply | To 14 | View Replies]

To: KittenClaws

Just dang!

I wanted to brag about spelling HYPOTHESIS correctly.

Glad I could help though.


23 posted on 10/04/2012 5:29:24 PM PDT by Randy Larsen (Damned if I do, Damned if I don't. Damn it, I will!)
[ Post Reply | Private Reply | To 17 | View Replies]

To: Talisker

I like your answer; LOL


24 posted on 10/04/2012 5:31:44 PM PDT by Dust in the Wind (U S Troops Rock)
[ Post Reply | Private Reply | To 14 | View Replies]

To: jwsea55
The red dot on the moving chart is supposed to represent where the center of mass is moving. The blue on the spring represents the compressed part.
______________________________________________

I watched it again and you're right. But, the blue and the red dot meet the end at (seemingly) the same moment.

25 posted on 10/04/2012 5:32:12 PM PDT by KittenClaws (You may have to fight a battle more than once in order to win it." - Margaret Thatcher)
[ Post Reply | Private Reply | To 19 | View Replies]

To: Organic Panic
Interesting!!! Thanks.

It is amazing how the energy stored in a tensioned coil changes things. But that "damn bottom" still doesn't move. Ha Ha.

26 posted on 10/04/2012 5:32:42 PM PDT by jwsea55
[ Post Reply | Private Reply | To 18 | View Replies]

To: Randy Larsen

Just dang!

I wanted to brag about spelling HYPOTHESIS correctly.

Glad I could help though.

__________________________________

LOL! You’re beyond me - I had to spell check “slinky”.


27 posted on 10/04/2012 5:34:10 PM PDT by KittenClaws (You may have to fight a battle more than once in order to win it." - Margaret Thatcher)
[ Post Reply | Private Reply | To 23 | View Replies]

To: Talisker

Pretty much agree. These guys may have too much education.


28 posted on 10/04/2012 5:37:38 PM PDT by jwsea55
[ Post Reply | Private Reply | To 14 | View Replies]

To: Talisker

Thanks for your post.... Very interesting

Of course now I will be up the night... Thinking about it....

I never considered that gravity moved faster than light....


29 posted on 10/04/2012 5:37:44 PM PDT by Popman (In a place you only dream of Where your soul is always free)
[ Post Reply | Private Reply | To 14 | View Replies]

To: Popman
See post 18, too.
You have to love Freerepublic. I figured we would get some people who could put this in plain English.
30 posted on 10/04/2012 5:42:57 PM PDT by jwsea55
[ Post Reply | Private Reply | To 29 | View Replies]

To: Popman

I never considered that gravity moved faster than light....

So human eyes and the lens of a camera see light but gravity is faster.....that can only mean that every fumble, TD and infraction in the NFL is wrong upon review! /s


31 posted on 10/04/2012 6:00:53 PM PDT by JouleZ (You are the company you keep.)
[ Post Reply | Private Reply | To 29 | View Replies]

To: JouleZ

LOL....

I should have been more technically correct...the force of gravity is faster than light....

I’m still trying to wrap my head around that idea....


32 posted on 10/04/2012 6:05:18 PM PDT by Popman (In a place you only dream of Where your soul is always free)
[ Post Reply | Private Reply | To 31 | View Replies]

To: jwsea55

Like I read on this website one time...”Liberals are like slinkies, they don’t do much, but it’s fun to watch them get pushed a flight of stairs.”


33 posted on 10/04/2012 6:10:51 PM PDT by drinktheobamakoolaid (How do you replace an empty suit? Vote on November 6, 2012)
[ Post Reply | Private Reply | To 1 | View Replies]

To: jwsea55

Yeah, but that seems to be what I said.

If the slinky, instead of being a plastic coil was a solid-walled plastic cylinder, the bottom would move at the same time as the top.


34 posted on 10/04/2012 6:20:41 PM PDT by SatinDoll (NATURAL BORN CITZEN: BORN IN THE USA OF CITIZEN PARENTS.)
[ Post Reply | Private Reply | To 5 | View Replies]

To: Organic Panic; Randy Larsen; jwsea55
Tension / gravity / center of mass / clear solutions versus some ersatz geek with a video camera.

That's all pretty clear.

What it leaves me wondering at is the simple genius behind the Slinky itself.

(Which, by the way, worked way better in the original steel version..I just couldn't avoid buying one of the current plastic [!] imitations.)

35 posted on 10/04/2012 6:29:54 PM PDT by norton
[ Post Reply | Private Reply | To 18 | View Replies]

To: jwsea55; Slings and Arrows

Neat stuff!


36 posted on 10/04/2012 6:37:05 PM PDT by Jet Jaguar (The pundits have forgotten the 2010 elections.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: jwsea55
It's fairly simple, though quite interesting.

The slinky starts out under tension, like an extended spring. The top is being pulled down toward the center and the bottom is being pulled up toward the center.
To give the slinky its other interesting properties, the spring-rate has been matched to gravitational forces.
As a result, the bottom is pulled up by the tension in the 'spring' with about the same force as the gravitational effect, so it barely moves, and that is true elsewhere in the slinky, until the coil above it has collapsed.
At the start, the second coil is pulled up by the pull from the top coil, but the top coil is pulled down by both the tension and gravitation, and falls. As it falls, the next coil down loses the pull from the top coil and starts to fall under gravity no longer balanced by the upward pull from the top coil, and so on down the slinky.
If the spring constant of the slinky were higher (or the weight of the coils lower), the bottom coil would start to rise instead of staying put -- but it wouldn't be a slinky, able to do those weird tricks, then.

37 posted on 10/04/2012 6:41:06 PM PDT by expat2
[ Post Reply | Private Reply | To 1 | View Replies]

To: norton
What it leaves me wondering at is the simple genius behind the Slinky itself.

Perfect add!

If I can I will find the story on that and post. For some reason I am thinking it was sort of interesting...but it has been decades since I heard it.

38 posted on 10/04/2012 8:30:07 PM PDT by jwsea55
[ Post Reply | Private Reply | To 35 | View Replies]

To: expat2
expat2 said: "The slinky starts out under tension, like an extended spring. "

Well, sort of ...

First, an anecdote from my college days while taking elementary physics.

I was fortunate enough to have "tutors" in the form of mechanical engineers while I was working and attending college. Almost every day included a science lesson of some sort.

As an interesting project, I was encouraged to create a device which consisted of a single spring, similar to the slinky and a cylindrical mass attached to the bottom of the spring with the top of the spring attached to a rigid support.

The spring constants, the weight of the cylindrical mass and the moment of inertia about its axis were chosen to accomplish a system of two linked oscillators.

One oscillator stored energy alternately in the extension or compression of the spring and in the vertical motion of the mass. In an idealized spring-mass system, the spring constant and the weight allow one to calculate the frequency of oscillation.

The "twist" in this project was to select the mass such that the torsional spring constant and the moment of inertia of the mass about its vertical axis would form a torsional spring-mass system. In this system, the energy would alternately be stored in the twisting of the spring and in the angular momentum of the mass as it rotated about its vertical axis.

By a suitable choice of diameter for the cylindrical mass, it was possible to create a system of two linked oscillators, the natural frequencies of which differed by a small amount.

The result could be observed by pulling the mass downward and releasing it to impart the initial energy to the system. After several vertical oscillations, the magnitude of the vertical motion would decrease, eventually reaching zero. During the decrease in magnitude of the vertical oscillations, the spring was delivering energy into the torsional spring-mass system. The mass would begin rotating first one way about the vertical axis and then reverse to the opposite direction.

The secret to the effect was the fact that a helical spring must "unwind" a little bit as it is stretched. Each coil, being further from its neighbors when the spring is stretched, must cover a greater distance. The stretching of the spring creates a twisting force. This force is reversed when the spring is unstretched. Each stretching of the spring in the spring-mass system I described transfers a bit of the energy which was in the vertically translating mass into rotation of the mass about the vertical axis.

The above description explains why we see the twisting of the slinky in the video as the compression of the slinky changes.

The other key observation I would make concerns the fact that the slinky has no "mass" attached to the bottom of it. In a classical spring-mass system, the spring is typically mass-less. The spring-constant describes the extension or compression of the mass-less spring when acted upon by an external force, typically a mass acting under the effects of gravity.

In the slinky video, the spring is not mass-less. The extension of the slinky is entirely due to ITS OWN mass. The result is that the upper coils of the slinky are far apart due to the fact that these coils are supporting the entire slinky. To a first-approximation, the coils at the center of the slinky should be half as far apart, since those coils are supporting only the half of the slinky that hangs below them. The coils at the bottom are supporting hardly any mass at all.

Suspending the slinky as it is in the video results in a non-uniform extension of the spring, with the extension starting at zero at the bottom of the slinky and rising linearly to a value at the top which can be predicted by knowing the spring constant of the slinky.

Now imagine for a moment that we could somehow take this slinky, in its non-uniformly extended state, and place it in a space without a gravitational field. Recall that the extension of the spring at the top was exactly that which was needed to counteract the affect of gravity on the bottom of the spring. Without the gravitational field, that spring force would be that which would accelerate the bottom of the spring at 32 feet per second per second toward the center of mass of the spring.

The top of the spring would accelerate toward the center of mass of the spring at a greater rate, that which would result in the center of mass remaining still, since the spring is not being acted upon externally.

When the slinky is released as in the video, the bottom of the spring is accelerating toward the center of mass of the spring at 32 feet per second per second. At the same time, the center of mass of the spring is accelerating toward the center of the earth at 32 feet per second per second. The two accelerations cancel exactly at the bottom of the spring, causing the bottom to be motionless in the non-accelerating frame of reference which is the earth. The bottom of the spring IS accelerating in the frame of reference of the moving center of mass of the slinky.

39 posted on 10/04/2012 8:30:48 PM PDT by William Tell
[ Post Reply | Private Reply | To 37 | View Replies]

To: SatinDoll
If the slinky, instead of being a plastic coil was a solid-walled plastic cylinder, the bottom would move at the same time as the top.

This has to be God's sense of humor.

40 posted on 10/04/2012 8:33:59 PM PDT by jwsea55
[ Post Reply | Private Reply | To 34 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-8081-84 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson