Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Tunneling of slow quantum packets through the high Coulomb barrier
Arxiv.org ^ | 16 Feb 2014 | Victor Dodonov

Posted on 02/18/2014 4:38:33 PM PST by Kevmo

Tunneling of slow quantum packets through the high Coulomb barrier A.V. Dodonov, V.V. Dodonov (Submitted on 16 Feb 2014)

We study the tunneling of slow quantum packets through a high Coulomb barrier. We show that the transmission coefficient can be quite different from the standard expression obtained in the plane wave (WKB) approximation (and larger by many orders of magnitude), even if the momentum dispersion is much smaller than the mean value of the momentum.

Comments: 3 pages, 3 figures, accepted for publication in Physics Letters A Subjects: Quantum Physics (quant-ph) Cite as: arXiv:1402.3837 [quant-ph] (or arXiv:1402.3837v1 [quant-ph] for this version) Submission history From: Victor Dodonov [view email]

-------------------------------------------


TOPICS: Science
KEYWORDS: canr; cmns; coldfusion; coulombbarrier; lenr
Discussion on Vortex-L

[Vo]:Re: Slow quantum packets can tunnel thru high Coulomb barrier

Bob Cook Tue, 18 Feb 2014 07:03:14 -0800

Axil-

The squeezing of a H molecule or a proton inside a Ni body-centered cubic cell may change the angular momentum of the trapped entity and facilitate spin coupling with one or more different Ni nuclei, and transmutation to a lower energy, if such a state is available with the particles in the system.

Bob From: Axil Axil Sent: Monday, February 17, 2014 10:38 PM To: vortex-l Subject: Re: [Vo]:Slow quantum packets can tunnel thru high Coulomb barrier

More...

The spin produced by slow light will also be squeezed. When the position of the spin of slow light is highly confined, its magnitude will be wide-ranging. For example, if the spin of a squeezed light packet averages at 5 tesla, its fluctuation may amplify the maximum power that it can produce in orders of magnitude by 10 or 20 times based on its slowness.

Coulomb barrier screening is directly related to the strength of the EMF field which can grow very large when light is squeezed.

On Tue, Feb 18, 2014 at 1:19 AM, Axil Axil wrote:

How do we slow light down…we squeeze it. Even though this slow light is restricted in position, it is wide-ranging in momentum. Small optical cavities slow down light but in doing so, this squeezing makes it very potent in momentum.

.

On Mon, Feb 17, 2014 at 11:27 PM, wrote:

New Arxiv.org paper related to LENR -

"Tunneling of slow quantum packets through the high Coulomb barrier"

ABSTRACT: We study the tunneling of slow quantum packets through a high Coulomb barrier. We show that the transmission coefficient can be quite different from the standard expression obtained in the plane wave (WKB) approximation (and larger by many orders of magnitude), even if the momentum dispersion is much smaller than the mean value of the momentum.

http://arxiv.org/abs/1402.3837

"Slow" packets here refer to relatively narrow packets whose center moves at a relatively slow velocity. Narrow wave packets can contain high momentum components.

I believe that the following 2013 presentation made by Allan Widom - "Electro-Weak and Electro-Strong Views of Nuclear Transmutations" vglobale.it/public/files/2013/Cirps-Widom.pdfý - points out a similar effect. I.E, on slide 12 "Electron Mass Renormalization I"

He notes that "Slowly Varying u(x) and Quickly Varying S(x)" can represent an wave packet with much more energy than a simple observation of its envelop "u(x)" would lead one to expect if its phase "S(x)" is rapidly oscillating within the a slow (even almost static) envelop.

-- Lou Pagnucco

1 posted on 02/18/2014 4:38:34 PM PST by Kevmo
[ Post Reply | Private Reply | View Replies]

To: dangerdoc; citizen; Liberty1970; Red Badger; Wonder Warthog; PA Engineer; glock rocks; free_life; ..

The Cold Fusion/LENR Ping List

http://www.freerepublic.com/tag/coldfusion/index?tab=articles


http://lenr-canr.org/

Vortex-L
http://tinyurl.com/pxtqx3y

Best book to get started on this subject:
EXCESS HEAT
Why Cold Fusion Research Prevailed
Free Download:

http://iccf9.global.tsinghua.edu.cn/lenr%20home%20page/acrobat/BeaudetteCexcessheat.pdf


2 posted on 02/18/2014 4:39:31 PM PST by Kevmo ("A person's a person, no matter how small" ~Horton Hears a Who)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Kevmo

I don’t know but I suspect it’s due to global warming.


3 posted on 02/18/2014 4:40:57 PM PST by beethovenfan (If Islam is the solution, the "problem" must be freedom.)
[ Post Reply | Private Reply | To 2 | View Replies]

To: Kevmo
We study the tunneling of slow quantum packets through a high Coulomb barrier.

HUH?

Does this have anything to do with the even flow of ice cream from a Dairy Queen dispenser?

4 posted on 02/18/2014 4:41:44 PM PST by Hot Tabasco (Was Occam's razor made by Gillette?)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Kevmo

Thanks Kevmo...

This might be useful to me in my project.


5 posted on 02/18/2014 4:45:43 PM PST by babygene ( .)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Kevmo
Tunneling of slow quantum packets through the high Coulomb barrier

Cool! When it's done with that they can take it out to Seattle and finish that tunnel.

6 posted on 02/18/2014 4:49:12 PM PST by TigersEye (Stupid is a Progressive disease.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Kevmo
Well, here is the executive summary.

As we all know, two nuclei cannot approach each other and start a nuclear reaction because of electrostatic forces that push them away from each other. It takes considerable external energy to punch through that barrier.

Quantum mechanics defines a tunneling mechanism, by which particles can penetrate such barriers. However classical calculations show that protons (nucleus of Hydrogen) cannot punch through the Coulomb barrier that protects the other nucleus.

The authors point out that classical calculations are based on assumptions that are not true in the real world. In particular, quantum packets (particles) are seen as infinitely large, flat waves. In reality quantum packets have finite size and "shape." When authors adjusted the formulas they discovered that under certain conditions (so-called "slow particles") there may be just enough energy for protons to penetrate the barrier, approach the nucleus of another atom, and start a nuclear reaction.

7 posted on 02/18/2014 5:20:58 PM PST by Greysard
[ Post Reply | Private Reply | To 2 | View Replies]

To: Kevmo

hmm. this should include some testable predictions.


8 posted on 02/18/2014 6:46:03 PM PST by no-s (when democracy is displaced by tyranny, the armed citizen still gets to vote)
[ Post Reply | Private Reply | To 2 | View Replies]

To: reed13

late night reading material


9 posted on 02/18/2014 7:50:02 PM PST by reed13k (For evil to triumph it is only necessary for good men to do nothings)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Kevmo

I envy anyone who has the faintest comprehension of this article.


10 posted on 02/18/2014 8:01:06 PM PST by Rebelbase (Tagline: optional, printed after your name on post)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Kevmo

squeezing light and tunneling effects are not new phenomena.

there is nothing here that would even suggest LENR

By the way how did the big demo go??? Oh yeah it didn’t


11 posted on 02/18/2014 8:12:02 PM PST by Nifster
[ Post Reply | Private Reply | To 1 | View Replies]

To: Greysard

Thanks for the translation!


12 posted on 02/19/2014 5:36:08 AM PST by citizen (There is always free government cheese in the mouse trap.....https://twitter.com/kracker0)
[ Post Reply | Private Reply | To 7 | View Replies]

To: Nifster
In the paper:
Here we consider this problem for the Coulomb potential barrier, which has numerous applications, especially for the fusion and radioactive decay phenomena. We make em- phasis on the transmission probabilities of slow particles , because this regime attracted significant attention in attempts to explain experimental data related to low energy nuclear reactions [9, 10, 11, 12, 13, 14]. It seems obvious that the spread of the packet in momentum space should result in the increase of the barrier transparency, due to the enhanced contribution of the plane wave components with high values of momenta. What is not so obvious (at least, unexpected), it is the fact that even small dispersions of the momentum can result in increase of the transmission coeffcient by many orders of magnitude. This is the motivation for writing this article

13 posted on 02/19/2014 6:46:31 AM PST by PapaBear3625 (You don't notice it's a police state until the police come for you.)
[ Post Reply | Private Reply | To 11 | View Replies]

To: Greysard

Pretty good summary. Do you see any testable predictions?


14 posted on 02/19/2014 2:11:18 PM PST by Kevmo ("A person's a person, no matter how small" ~Horton Hears a Who)
[ Post Reply | Private Reply | To 7 | View Replies]

To: Nifster

there is nothing here that would even suggest LENR
***That’s only because you do not understand what holds fusion back — the Coulomb Barrier. But other than that completely inane assertion, perhaps your comment has merit.

By the way how did the big demo go??? Oh yeah it didn’t
***The authors of this article claimed to demo??? WTF?


15 posted on 02/19/2014 2:13:32 PM PST by Kevmo ("A person's a person, no matter how small" ~Horton Hears a Who)
[ Post Reply | Private Reply | To 11 | View Replies]

To: Kevmo
Do you see any testable predictions?

I am not an experimental physicist, but from my very basic understanding of the problem you can relatively easily set up an experiment.

First, you want to do it on a small proton accelerator. There are many of these around, you do not need the LHC. You want the detectors, so that you know what happens when you do things; and you want the stable, controllable beam of protons (the α radiation.)

The accelerator will establish the baseline (the classical model.) You give protons enough energy to penetrate the Coulomb barrier, per the known physics, see the smashed nuclei, count them, and write the number down. That's where you start - by calibrating your setup.

Then you apply conditions (slow particles, shaped wavefront, etc.) that the authors specify in their article. You do it slowly, step by step, and you reduce the energy of protons as you do it until they stop interacting. This gives you the chart of corrections to the classical model. The authors calculated this chart in their paper, so it can be directly compared.

In the end, it may appear that you need very little acceleration of protons for them to tunnel to the other nucleus. If that is confirmed, or approached, then you have the proof.

But note that it may be a long way from a publication at arxiv.org to the experiment at a respected facility. Anyone can publish at arxiv.org. It all depends on how much access one has to the machinery. Also, pure theoretical physicists may have no clue about how to build the setup. It requires knowledge of materials, and engineering skills, and assembly skills... this is something that has to work in hard vacuum.

16 posted on 02/19/2014 2:34:32 PM PST by Greysard
[ Post Reply | Private Reply | To 14 | View Replies]

To: Greysard
Something along these lines was presented as a paper at the latest ICFF symposium. IIRC, they found that in a solid matrix like deuterium loaded Pd, when bombarded with D+. that the probability of fusion increased by many orders of magnitude, yet with energies well below that necessary to "kinetically" overcome the Coulomb barrier. I think there were also some comments to the effect that the products of the reaction were very different from that obtained from "standard hot fusion".

I'll see if I can find that again and post a link (but don't hold your breath, as it might take a while).

17 posted on 02/19/2014 5:05:49 PM PST by Wonder Warthog (Newly fledged NRA Life Member (after many years as an "annual renewal" sort))
[ Post Reply | Private Reply | To 16 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson