Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Crisis In The Cosmos?
Science News Online ^ | 10-13-2005 | Ron Cowen

Posted on 10/13/2005 5:15:33 PM PDT by blam

Crisis in the Cosmos?

Galaxy-formation theory is in peril

Ron Cowen

Imagine peering into a nursery and seeing, among the cooing babies, a few that look like grown men. That's the startling situation that astronomers have stumbled upon as they've looked deep into space and thus back to a time when newborn galaxies filled the cosmos. Some of these babies have turned out to be nearly as massive as the Milky Way and other galactic geezers that have taken billions of years to form. Despite being only about 800 million years old, some of the infants are chock-full of old stars.

COSMIC CONUNDRUM. Youthful galaxies from the early universe appear already to be chock-full of old stars and to have packed on nearly as much mass as has the venerable Milky Way. Such young galaxies may challenge the standard theory of galaxy formation. Dean MacAdam

These chunky babies may be pointing to a cosmic crisis. They don't seem to fit the leading theory of galaxy formation, which cosmologists have relied on for more than 2 decades to explain an assortment of puzzling features of the universe. The theory posits that a pervasive, slow-moving, invisible type of matter vastly outweighs the observable matter in the universe. Under the gravitational influence of this unseen material, known as cold dark matter (SN: 4/23/05, p. 264), galaxies start out as small, starry fragments that merge to become much bigger objects. That's usually a gradual process, according to the theory.

The new findings raise the question: Did the universe have enough time during its first 800 million years for infant galaxies to have merged into mature-looking behemoths?

The theory can accommodate a few rare instances of such precocious growth by assuming that the jumbo galaxies reside in a few regions that have an unusually high density of dark matter. There, gravity would have pulled together objects faster than usual, accelerating galaxy growth.

But over the past 18 months, several teams have found so many massive galaxies from this early epoch that the theory is being stretched to its breaking point, several astronomers say.

"Our expectation is that [in the cold dark matter model] when you look back in time, it should be hard to see very massive structures because most galaxies at that early time in the universe are expected to be small," says astronomer Michael Rowan-Robinson of the Imperial College of Science, Technology and Medicine in London. "It would be worrying if this kind of [massive] galaxy is common" at early times.

If too many early, massive galaxies show up, "we might not have the right galaxy-formation scenario," says Bahram Mobasher of the Space Telescope Science Institute in Baltimore.

Even if the theory of cold dark matter survives this onslaught, the new observations of big galaxies in the most ancient of times have important implications. The findings suggest that the earliest galaxies formed stars in a great hurry, much more rapidly than galaxies that were born even a billion years later did. What's more, that first generation of stars might have been rife with heavyweights much more massive, on average, than stars from any later epoch.

Big babies?

Over the past few years, researchers have detected several galaxies that were surprisingly massive, given that their measured distance puts them in the early universe (SN: 3/1/03, p. 139: http://www.sciencenews.org/articles/20030301/bob10.asp). Two of the galaxies, recently found by Andrew Bunker of the University of Exeter in England and his colleagues, are less than a billion years old, which is less than 5 percent of the age of the universe.

Despite their youth, these galaxies contain stars that formed at least 100 million years earlier in time. Furthermore, the galaxies are at least 20 percent as massive as today's typical bright galaxy, which took some 12 billion years to pack on that material.

The team reports several of its findings in an upcoming Monthly Notices of the Royal Astronomical Society.

In a report on Sept. 27, Mobasher and his colleagues describe what appears to be an even more outlandish result. They have evidence of a true whopper of a galaxy—perhaps the most massive ever detected from the early universe. Observations taken at several visible-light and infrared wavelengths suggest that it's likely to be one of the earliest galaxies ever found. It appears to reside 13 billion light-years from Earth. So, the light now reaching our planet left the galaxy when the cosmos was about 800 million years old.

Mobasher's group estimates that the galaxy is six times as massive as the Milky Way. Moreover, the reddish tinge of the galaxy's stars indicates that they're quite mature and must have formed about 200 hundred million years farther back in time.

Bunker's team found a similarly old, red population of stars in the young galaxies they've detected.

In contrast, most galaxies observed at such an early epoch are aglow with the blue light emitted by clumps of hot, newborn stars, notes Richard Ellis of the California Institute of Technology in Pasadena, who is a member of both the Mobasher and the Bunker teams. The observations indicate that in an even earlier epoch, one whose denizens are now too far away and too dim to be seen by existing telescopes, some galaxies were "furiously luminous" and teeming with new stars, says Ellis.

The finding affirms that "there probably was a very luminous early period of [stellar] activity that we haven't yet witnessed," he says.

"That's terrific news for those of us who are working on the James Webb Space Telescope [the proposed successor to the Hubble Space Telescope] and future ground-based telescopes" that will be capable of looking farther back in time, he adds.

However, because Mobasher's team hasn't obtained a spectrum of the galaxy—the only sure way to measure its distance—the researchers can't be positive that the object is as remote and ancient as their images suggest.

Although the team's models deem it unlikely, Mobasher says that it's possible that instead of lying near the edge of the observable universe—and therefore residing far back in time—the galaxy is much closer and looks red merely because it's heavily shrouded in dust.

Seeking the young but old

To find old-looking young galaxies, astronomers combine the sharp eye of the Hubble Space Telescope, which can image faint galaxies in visible and near-infrared light, with the much-longer-wavelength infrared sensitivity of the Spitzer Space Telescope.

YOUNG ODDITY. Astronomers located an old-but-young galaxy among some 10,000 others in a patch of sky called the Hubble Ultra Deep Field (left). An enlargement of one section of the field (upper right) shows the galaxy's location in visible light (green circle). The galaxy shows up only faintly at near-infrared wavelengths (center right) but appears much brighter (bottom right) at the longer infrared wavelengths recorded by the Spitzer Space Telescope. The infrared brightness indicates that the galaxy is quite massive. Mobasher, NASA, ESA

The Hubble images were recorded as part of the Ultra Deep Field, the deepest survey of the heavens ever conducted in visible light. Between September 2003 and January 2004, Hubble stared at a patch of sky about one-tenth the diameter of the full moon for a total of 11 days, recording distant galaxies in unprecedented detail (SN: 05/15/04, p. 309: Available to subscribers at http://www.sciencenews.org/articles/20040515/fob6.asp).

A distant galaxy typically shows up at about the same brightness in near-infrared and visible-red wavelengths but vanishes at shorter wavelengths. That's because clouds of hydrogen gas absorb far-ultraviolet light, and the most distant galaxies have the largest amount of hydrogen gas between them and Earth (SN: 2/24/96, p. 120). The expansion of the universe shifts light from the remote galaxies to longer wavelengths, so the galaxies drop out of sight not in the far-ultraviolet but at longer wavelengths—blue visible light.

Once astronomers identify a galaxy as a distant dropout, they turn to the infrared Spitzer telescope to estimate the mass and age of its constituent stars. An infrared telescope is a prerequisite because the majority of stars in any galaxy glow strongest in the infrared. The infrared-brightest stars are also the oldest ones. Therefore, the brighter a galaxy appears in Spitzer images, the older its stars.

With Spitzer, notes Bunker, "we can attempt to age-date the stars." The observations indicate that some of the youngest galaxies in the universe are prematurely old. The stars in these infrared-bright distant galaxies formed a mere half-billion years after the Big Bang.

Sifting through

Nonetheless, theorists who study galaxy formation maintain that the cold dark matter model isn't yet in peril. Simon White of the Max Planck Institute for Astrophysics in Garching, Germany, says that the would-be spoilers have yet to demonstrate that massive galaxies in the early universe are common enough to pose a problem.

Mobasher told Science News that his team is currently studying several other galaxies within the Ultra Deep Field data that might be nearly as massive and as distant as the galaxy that his team has just announced.

"There could be a problem with the theory," says theorist Avi Loeb of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Any additional examples of [young] massive galaxies would be very useful for theorists attempting to figure out the implication."

If cold dark matter does run into trouble, the theory won't be salvaged with just a small bit of tinkering, Loeb warns. It's possible that the universe is populated by a type of dark matter different from that which cosmologists have considered most plausible, he adds.

Another idea, Loeb notes, harks back to the notion that chance, microscopic fluctuations in the density of the primordial cosmic soup gave birth to galaxies. Perhaps, he says, those fluctuations aren't uniformly distributed but are skewed to make the formation of rare, massive galaxies more likely than researchers had supposed.

If the galaxy found by Mobasher's team turns out to be too small to challenge current theory, it may nonetheless reveal the nature of the first generation of stars in the universe. The finding would add to the evidence that stars, not the black hole–powered beacons known as quasars, were the first objects to light up the cosmos after the Big Bang.

To gauge the galaxy's mass, Mobasher's team observed the brightness at several infrared wavelengths. The infrared glow comes from the galaxy's predominant stellar population—low-mass stars. Using the ratio of low-mass to high-mass stars measured in galaxies today, the team estimated the young galaxy's total stellar mass.

When researchers make such estimates, they assume that the ratio has remained the same throughout cosmic history. If that ratio was lower in the past, the galaxy would weigh less than Mobasher's team has estimated. It would also indicate, as some simulations suggest, that stars of the first generation were heftier than those in later generations.

The prospect of determining the nature of the first stars is thrilling, says Ellis, because their characteristics will reveal whether they were critical for ending the era known as the cosmic dark ages.

This dark era began some 300,000 years after the birth of the universe, when the radiation left over from the Big Bang streamed freely into space and faded.

The dark ages continued even as the first stars and quasars emerged from the murk because their light was quenched by hydrogen atoms. Only when those first objects generated enough ultraviolet light to break these atoms apart into protons and electrons could starlight flood the cosmos.

Cosmologists aren't sure whether quasars, stars, or both first lit up the universe. But the heftier the first generation of stars, the more important they would have been in switching on the cosmos. That's because the more massive a star is, the more ultraviolet light it can produce, breaking apart atoms and lighting the cosmos.

Indirectly, then, the galaxy discovered by Mobasher's group may be unusually illuminating. It might point to the group of stars that generated the cosmic dawn.

--------------------------------------------------------------------------------

If you have a comment on this article that you would like considered for publication in Science News, send it to editors@sciencenews.org. Please include your name and location.


TOPICS: News/Current Events
KEYWORDS: cosmology; cosmos; crisis; haltonarp; in; nasa; space; steadystate; the; xplanets
Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-76 next last
To: King Prout

wrong thread.
dead in the head.
time for bed.
nuff sed.


21 posted on 10/13/2005 8:45:36 PM PDT by King Prout ("La LAAAA La la la la... oh [bleep!] Gargamel has a FLAMETHROWEEEEEAAAAAAARRRRRGH!")
[ Post Reply | Private Reply | To 20 | View Replies]

To: King Prout

Sorry!

There was a Mote in my Eye...


22 posted on 10/13/2005 8:45:46 PM PDT by Darksheare (Cellphones, the Wholly Roamin' Empire.)
[ Post Reply | Private Reply | To 20 | View Replies]

To: Darksheare

yeah, right... not only did your damn typso virus make me misspell, but also made me put my complaint down on the wrong thread.

the typso virus has mutated, causing capricious thread-reply nomadism...

it is now some kind of durn Gypso virus.


23 posted on 10/13/2005 8:47:55 PM PDT by King Prout ("La LAAAA La la la la... oh [bleep!] Gargamel has a FLAMETHROWEEEEEAAAAAAARRRRRGH!")
[ Post Reply | Private Reply | To 22 | View Replies]

To: King Prout

Not the first time it has done it.
Probably won't be the last either.
I'm hoping to find an antidote or at least a vaccine soon.


Interesting thread though.
Wonder if the 'old/young stars' conundrum is due to possible odd side effect of cosmic inflation in the early universe?


24 posted on 10/13/2005 8:50:50 PM PDT by Darksheare (Cellphones, the Wholly Roamin' Empire.)
[ Post Reply | Private Reply | To 23 | View Replies]

To: Darksheare

see my #16... afaik, the possibility has never been modeled


25 posted on 10/13/2005 8:52:08 PM PDT by King Prout ("La LAAAA La la la la... oh [bleep!] Gargamel has a FLAMETHROWEEEEEAAAAAAARRRRRGH!")
[ Post Reply | Private Reply | To 24 | View Replies]

To: King Prout

Yikes.
Cannnibal universe.


26 posted on 10/13/2005 8:53:07 PM PDT by Darksheare (Cellphones, the Wholly Roamin' Empire.)
[ Post Reply | Private Reply | To 25 | View Replies]

To: Right Wing Professor; Physicist
Cosmologists should make an active effort to tone it down. It's a speculative field, and shouldn't be represented as anything else. If journalists are blowing it out of proportion, cosmologists should speak out against it. Meanwhile, it gives the rest of science a bad name.

Agreed, but it's the science popularizers who are really at fault. Scientists are human beings, too, subject to all the ego temptations and failings of the average Joe Sixpack.

I'm sure others will have views that contradict mine but I've watched for years as this situation has evolved. I was a long-time subscriber to National Geographic until I finally cancelled due to the magazine's pimping of the latest and most sensational theory as Absolute Fact, complete with "artists conceptions" and sleazy melodramatic writing.

There may have been others earlier (Isaac Asimov's politically-tinged rigidly atheistic science popularizations come to mind) but one of the great abusers was Carl Sagan and his coterie of Lefties. He parlayed his own political views into massive media hype via his PBS series, appearances on the Johnny Carson Show, his books and doomsday theories like Nuclear Winter. I was a charter member of the Planetary Society but opted out when I realized I was helping fund what was essentially a left-wing political "front" group.

The phenomenon has spilled over into most scientific fields. It's particularly noticeable to me in my special interest in paleontology/archaeology where most professional publications have a "political correctness" test for publication. Many tenured lefties have textbook royalties and academic reputations that depend on killing off or blocking any competing theories. We even have such travesties as Kennewick Man where government and a protected minority join forces to sabotage free scientific inquiry.

Again the mass media, the left-wing bureaucracy and academic Marxism have co-opted the search for objective researchd and intellectual inquiry.

27 posted on 10/13/2005 8:53:46 PM PDT by Bernard Marx (Don't make the mistake of interpreting my Civility as Servility)
[ Post Reply | Private Reply | To 18 | View Replies]

To: Darksheare; Alice au Wonderland

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmno...

more like a "Keep your dogs on a leash, keep your kids off the streets, keep your lawn tidy, and keep the noise down. Welcome to the neighborhood, Phuc Bang!" kind of universe

now I *really* need to goto bed.

ttyl, darks


28 posted on 10/13/2005 8:56:05 PM PDT by King Prout ("La LAAAA La la la la... oh [bleep!] Gargamel has a FLAMETHROWEEEEEAAAAAAARRRRRGH!")
[ Post Reply | Private Reply | To 26 | View Replies]

To: King Prout

LOL.

Have a good evening.


29 posted on 10/13/2005 9:03:20 PM PDT by Darksheare (Cellphones, the Wholly Roamin' Empire.)
[ Post Reply | Private Reply | To 28 | View Replies]

To: Right Wing Professor

I understand that dark energy is a construct invented to explain the unexplained...that there is no observational evidence for dark matter. Have you heard this as well?


30 posted on 10/13/2005 9:08:50 PM PDT by LiteKeeper (Beware the secularization of America)
[ Post Reply | Private Reply | To 18 | View Replies]

Comment #31 Removed by Moderator

To: Amos the Prophet
The Big Bang is still a theory, as is the expanding universe. We are deducing from sparse evidence. Greater things than this will be revealed. The universe is a mystery beyond the brightest and the best among us.

Something to think about. Well said...

32 posted on 10/13/2005 9:16:44 PM PDT by phantomworker (Boldness has genius, power and magic in it... Begin it now!)
[ Post Reply | Private Reply | To 6 | View Replies]

To: Bernard Marx
Scientists are human beings, too, subject to all the ego temptations and failings of the average Joe

I am glad you pointed that out. I too, had been an Asimov and Sagan fan until I saw more of (especially Sagan) his philosophy and world view.
I still like Clarke's Rendezvous with Rama and Childhoods End, read those circa 1971.

And relate to the same things you mention about National Geographic representations of the latest and most sensational theory as Absolute Fact. The first time around or two it was somewhat exciting (like the 11 year old with the early Time Life books) but how many times can the universe be turned on its head before one says 'wait a minute here, I think something is wrong here' ;)

IMO, honest assessments of the state of science, like the one you brought here will do greatly for science.

Wolf
33 posted on 10/13/2005 10:13:34 PM PDT by RunningWolf (tag line limbo)
[ Post Reply | Private Reply | To 27 | View Replies]

To: phantomworker; Amos the Prophet
The Big Bang is still a theory, as is the expanding universe. We are deducing from sparse evidence. Greater things than this will be revealed. The universe is a mystery beyond the brightest and the best among us.

Something to think about. Well said...


Let me join both of you on that.

Wolf
34 posted on 10/13/2005 10:15:48 PM PDT by RunningWolf (tag line limbo)
[ Post Reply | Private Reply | To 32 | View Replies]

To: blam
Good article Blam, Thank You.

Wolf
35 posted on 10/13/2005 10:16:39 PM PDT by RunningWolf (tag line limbo)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Mike Darancette

"Let me be the first: Bush's Fault for Crisis in the Cosmos."

For me he it's his fault to go to the moon and therefore abandon the Hubble Space Telescope. And please don't mention the James Webb Space Telescope. It is scheduled for launch no earlier than June 2013. (http://www.jwst.nasa.gov/) What will we have up there if Hubble starts tumbling? SM4, but when? (http://hubble.nasa.gov/missions/intro.php) What will the scientist do intermediate?


36 posted on 10/14/2005 1:32:19 AM PDT by MHalblaub (Tell me in four more years (No, I did not vote for Kerry))
[ Post Reply | Private Reply | To 4 | View Replies]

To: Amos the Prophet

The Big Bang theory is, simply putting it... wrong.


37 posted on 10/14/2005 1:58:30 AM PDT by SealSeven (Moving at the speed of dark.... Even "nothing" takes up space.)
[ Post Reply | Private Reply | To 6 | View Replies]

To: blam
Maybe this thread has something to do with it..

Dark Matter: Invisible, Mysterious and Perhaps Nonexistent

Not sure if I've got it right, but the idea seems to be that instead of dark matter, galaxy formation acts more like swirls in a fluid medium.. ( which to me, with the reference to "angular velocity" would indicate that "spin" is a component in the formation process. )

"If" the universe was denser, more compact, and the attendant matter acted somewhat like the fluid described, then early formation of stars and galaxies may very well have been not only possible, but far more possible than it is presently, given the expansion of that original mass..

Anyway, that's my theory... well, his theory, and my theory on his theory..

38 posted on 10/14/2005 3:27:59 AM PDT by Drammach (Freedom; not just a job, it's an adventure..)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Bernard Marx
"I was a charter member of the Planetary Society but opted out when I realized I was helping fund what was essentially a left-wing political "front" group."

Me too.

39 posted on 10/14/2005 4:18:05 AM PDT by blam
[ Post Reply | Private Reply | To 27 | View Replies]

To: Right Wing Professor
If dark energy actually exists. I have a problem with making up something which has no experimental basis, simply to make the equations fit.

But dark energy was an observational result, not some theoretical flyer.

The equations are well understood: the Einstein field equations from General Relativity. The observations are simple: how do the galaxies move, and how does that change with distance. Careful observations showed that those didn't line up. That leaves three possibilities: either the observations are wrong, the equations are wrong, or something else is out there.

The observations weren't wrong. They were reproduced by other groups. They were tested by different types of observational measurements. The effect is real.

Are the equations wrong? Perhaps, but, other than this one ugly fact, there was no theoretical basis for rewriting the theory. Nobody had any new approach that would fit all of the old data, and account for the cosmological observations.

There was an out, however. Preciently, Einstein included a free parameter in his equations: the Cosmological Constant. It was always assumed to be zero, and Einstein died thinking that it was a mistake to include it. However, the observational anomaly simply goes away if this is set to a certain non-zero value. This is what has been given the name "dark energy".

Dark energy is an independently testable hypothesis. It has already survived a number of observational tests, and others are planned. There are several models describing the nature of dark energy, and these are testable, too. Experiments are under construction or taking data as we speak.

It seems you object to some part of this approach. How should it have been handled differently?

It's a speculative field, and shouldn't be represented as anything else.

It's fundamentally an observational field.

40 posted on 10/14/2005 4:37:10 AM PDT by Physicist
[ Post Reply | Private Reply | To 18 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-76 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson