Free Republic
Browse · Search
Topics · Post Article

Skip to comments.

An Egg-Citing Recipe for Human Stem Cells
ScienceNOW ^ | 5 October 2011 | Gretchen Vogel

Posted on 10/13/2011 8:27:04 PM PDT by neverdem

Enlarge Image
Turn it on. A fused human egg cell and skin cell form an early embryo that turns on the skin cell's green fluorescent protein on day 4 of development and forms a blastocyst by day 6.
Credit: Noggle et al., Nature 478 (6 October 2011)

Researchers have found a new way to turn adult cells into embryonic stem (ES) cells: using human eggs, or oocytes. The feat comes after more than a decade of failed attempts, and it is still a work in progress. The resulting stem cells are not normal; they carry the genomes of both the adult cell and the oocyte, so they have three copies of each chromosome instead of the usual two. But they seem, in initial tests, to act like other pluripotent stem cells, cells that scientists prize because they can form all of the body's tissue types.

"The authors are to be congratulated," says Ian Wilmut of the University of Edinburgh in the United Kingdom, who with his colleagues cloned Dolly the sheep in 1996 using the same technique, which is known as nuclear transfer.

The work, published online today in Nature, could help scientists better understand "cellular reprogramming," the process that can bestow pluripotency onto an adult cell. Researchers hope to use the technique to make patient-specific stem cell lines, which can help them better understand certain diseases. Ultimately, they hope to be able to treat patients with such cells.

At the same time, the result is sure to spark controversy. Many people fear that such research will prompt demand for human oocytes. Others oppose work such as this because it involves creating a human embryo and then destroying it. And some worry that a version of the technique could be used to generate a viable baby, i.e., to clone a human being. In the near term, at least, the fact that the procedure produces abnormal cells should dampen some of those concerns. The resulting embryos developed for about a week, but they would likely not be viable much beyond that point.

In 2006, a team led by Shinya Yamanaka of Kyoto University in Japan found a way to reprogram cells without oocytes. The team members found that by turning on a handful of genes, they could transform adult cells into pluripotent cells dubbed induced pluripotent stem (iPS) cells. That technique seemed to offer a way around the difficult and controversial research on human nuclear transfer (the scientific term for replacing an oocyte's DNA with that of an adult cell).

But the question has remained: Are iPS cells equivalent to ES cells? There is some evidence, for example, that mouse ES cells produced via nuclear transfer may be more thoroughly reprogrammed than iPS cells, some of which retain traces of the adult tissue type they came from. Many researchers argue that to fully understand reprogramming, they need to be able to study human cells reprogrammed by oocytes.

Since the 1996 announcement that researchers had used nuclear transfer to clone Dolly the sheep from an adult cell—the first such success in mammals—scientists have been trying to use a similar technique to clone human and monkey cells. But primate egg cells have proved very difficult to work with. (Most famously, Woo Suk Hwang at Seoul National University in South Korea claimed to have made a dozen stem cell lines from human nuclear transfer-derived embryos. Those claims turned out to be fraudulent.) In the vast majority of attempts, the human embryos created by nuclear transfer seem to stop developing after about 3 days, when they have just six to eight cells—too early to procure stem cells.

The kind of work described in the Nature study has also been difficult because it requires a scarce resource: eggs from young, fertile, healthy women. Dieter Egli of the New York Stem Cell Foundation laboratory in New York City was able to cooperate with a fertility clinic associated with Columbia University. That partnership gave him a steady supply of oocytes donated by women specifically for research. (The donors received the clinic's standard $8000 payment.) Egli used the chance to set up a systematic study of human nuclear transfer.

At first, the researchers ran into the familiar roadblock. When they removed the egg's nucleus, fused the genome-free oocyte with a skin cell, and triggered cell division, the eggs divided once or twice. But after 2 or 3 days, the cells stopped dividing and ultimately died.

Egli and colleagues noticed that development stopped at the time when the embryonic nucleus would usually start expressing genes. And they saw that the green fluorescent protein (GFP) that marked the donor skin cells was not expressed in the arrested cells. When they looked more closely, they found several lines of evidence that, for some reason, the new nucleus wasn't able to turn on any of its genes.

As a control experiment, the researchers fused a GFP-tagged donor skin cell with an intact oocyte—without removing the oocyte nucleus—and triggered the cell to divide. Immediately, they saw a difference. After a few days, the embryos started to express the GFP. And, out of 63 tries, the researchers produced 13 blastocysts, the hollow ball of cells that forms around day 5 of development. From those 13 blastocysts, the researchers were able to derive two stem cell lines. One carries the genome of a male who has type 1 diabetes, and the other carries the genome of a healthy male adult. Despite their extra chromosomes, the cells expressed genes typical of pluripotent cells, and they were able to form tissues from all three embryonic germ layers—a basic test of pluripotency. An initial analysis also suggests the skin cell "memory" had been erased.

The experiments take researchers much closer to understanding the obstacles in primate nuclear transfer experiments—and ultimately overcoming them, Wilmut says. "There is clearly something missing that you have to have at the start of transcription," he says. "It should be possible to a), identify it, and b), supply it."

Egli and his team are now looking for the missing factor, he says, as well as testing to see whether using a different kind of adult cell—perhaps a stem cell from blood or neural tissue—might get around the problem. They will also continue to characterize the nuclear transfer stem cell lines, he says, to see how they compare with ES and iPS cells.

Despite the ethical, legal, and practical hurdles that complicate his work, Egli says the effort is worth it. "It's not about determining which is the easier approach," he says. "It is about determining which is the better approach."

TOPICS: Culture/Society; News/Current Events; Technical; Testing
KEYWORDS: eggs; mice; mouse; oocytes; stemcells
When they removed the egg's nucleus, fused the genome-free oocyte with a skin cell, and triggered cell division, the eggs divided once or twice. But after 2 or 3 days, the cells stopped dividing and ultimately died.

That's about the time a normal fertilized egg implants in the endometrium of the uterus, IIRC, as fertilization usually happens in the fallopian tubes.

"It is about determining which is the better approach."

Just from a biological viewpoint, creating total trisomy, or a near total trisomy when the adult cell comes from a male, escapes me. It's so abnormal.

1 posted on 10/13/2011 8:27:10 PM PDT by neverdem
[ Post Reply | Private Reply | View Replies]

To: neverdem

Odd how all of these pro-stem cell articles are Popping up!

2 posted on 10/13/2011 8:34:10 PM PDT by acapesket
[ Post Reply | Private Reply | To 1 | View Replies]

To: Coleus; Peach; airborne; Asphalt; Dr. Scarpetta; I'm ALL Right!; StAnDeliver; ovrtaxt; ...
They think they figured out why nuclear transfer with human oocytes doesn't work, IMHO. Here's the abstract:

The exchange of the oocyte’s genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cells affected in degenerative human diseases. Such cells, carrying the patient’s genome, might be useful for cell replacement. Here we report that the development of human oocytes after genome exchange arrests at late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, the resultant triploid cells develop to the blastocyst stage. Stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies removal of the oocyte genome as the primary cause of developmental failure after genome exchange.

3 posted on 10/13/2011 8:43:15 PM PDT by neverdem (Xin loi minh oi)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Now we know where real (non-leftist) zombies will come from.

4 posted on 10/13/2011 8:48:33 PM PDT by GeronL (The Right to Life came before the Right to Happiness)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Mary Shelley, despite her awkwardness, was onto something.

5 posted on 10/13/2011 10:58:33 PM PDT by onedoug (lf)
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794 is powered by software copyright 2000-2008 John Robinson