Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Particle Smasher Hints at Physics Breakthrough
ScienceNOW ^ | 17 November 2011 | Jon Cartwright

Posted on 11/19/2011 9:58:30 PM PST by neverdem

Enlarge Image
sn-lhcb.jpg
Standing proud. The LHCb experiment has uncovered hints of "new physics," but will its results hold up?
Credit: CERN

In late 2008, a few onlookers believed that the Large Hadron Collider (LHC) would bring the end of the world. Three years later, our planet remains intact, but the European particle smasher may have made its first crack in modern physics.

If this crack turns out to be real, it might help explain an enduring mystery of the universe: why there's lots of normal matter, but hardly any of the opposite—antimatter. "If it holds up, it's exciting," says particle physicist Robert Roser of the Fermi National Accelerator Laboratory in Batavia, Illinois.

To understand why physicists are excited, look around: We're surrounded by stuff. That might seem obvious, but scientists have long wondered why there's anything at all. Accepted theories suggest that the big bang should have produced equal amounts of matter and antimatter, which would have soon annihilated each other. Clearly, the balance tipped in favor of normal matter, allowing the creation of everything we see today—but how, no one's sure.

Most probably, theorists say, the properties of matter and antimatter aren't quite symmetrical. Technically, this disparity is known as charge-parity (CP) violation, and it should crop up when particles naturally decay: either normal particles would decay more often than their antiparticles do or vice versa. According to the accepted theory of elementary particles, the standard model, there should be a low level of CP violation but not enough to explain the prevalence of normal matter. So experiments have been trying to find cases in which CP violation is higher.

That's where LHCb, one of six detectors at the LHC, may have been successful. It has been tracing the paths of particles known as D0 mesons, which, along with their antiparticles, can decay into pairs of either pions or kaons. By tallying these pions and kaons, the LHCb physicists have calculated the relative decay rates between the D0 particles and antiparticles. The result, revealed at a meeting in Paris this week, is startling: the rates differ by 0.8%.

On the face of it, this level of CP violation is at least eight times as high as the standard model allows, so it could help explain why there is still "stuff" in the universe. But there's a caveat: It's not precise enough. For true discoveries, physicists demand a statistical certainty of at least five sigma, which means there should be less than one chance in 3 million of the result's being a random blip in the data. Currently, the LHCb team has a certainty of three sigma, so there's about one chance in 100 the result is a fluke.

Matthew Charles, a physicist at the University of Oxford in the United Kingdom and a member of the 700-strong LHCb collaboration, is naturally cautious. "The next step will be to analyze the remaining data taken in 2011," he says. "The sample we've used so far is only about 60% of what we've recorded, so the remainder will improve our precision quite a bit and will give us a strong clue as to whether the result will hold up." For that analysis, the public will have to wait until next year.

Particle physicist Paul Harrison of the University of Warwick in the United Kingdom, who works on other LHCb studies, isn't getting his hopes up. "I'm not betting my pension on this result standing the test of further data," he says. He thinks the uncertainty is simply too big. "Since we are measuring hundreds of different things at the LHC, then every so often one of them will give a three-sigma effect like this at random."

There are reasons to be positive, though. Last year, the CDF collaboration based at Fermilab reported a similar difference between the D0 decay rates of 0.46%. At the time, the result was thought likely to be a blip because CDF's statistical uncertainty was fairly big, but taken together with the LHCb result, it might be seen to carry more weight. And CDF, like LHCb, still has more data to trawl through.

"We are now obviously very motivated to extend our analysis to our full data sample and see if we can get an independent confirmation of the LHCb result," says Giovanni Punzi of the University of Pisa in Italy, a spokesperson for the CDF collaboration.

CORRECTION: This article originally stated that Matthew Charles is a spokesperson for the LHCb collaboration. However, he does not hold that specific title.



TOPICS: Culture/Society; News/Current Events; Testing
KEYWORDS: cpviolation; lhc; lhcb; opera; physics; tachyon

1 posted on 11/19/2011 9:58:31 PM PST by neverdem
[ Post Reply | Private Reply | View Replies]

To: neverdem
Particle video
2 posted on 11/19/2011 10:08:38 PM PST by MrEdd (Heck? Geewhiz Cripes, thats the place where people who don't believe in Gosh think they aint going.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Interesting. But then the question will arise. Why does what we consider “normal” matter differ in duration from the “evil” twin matter?


3 posted on 11/19/2011 10:11:15 PM PST by AndrewC
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Looks like they may have produced our old theoretical friend the tachyon. This is a particle which can’t travel at any speed less than that of light (in “particular” it cannot rest). Because of this it would be virtually impossible to build anything out of tachyons (like herding very speedy cats) but they would not be possessed of an infinite kinetic energy.


4 posted on 11/19/2011 10:13:02 PM PST by HiTech RedNeck (bloodwashed not whitewashed)
[ Post Reply | Private Reply | To 1 | View Replies]

To: AndrewC

The last I heard, Fermi labs had already discovered a slight bias in the way the weak nuclear force operates between matter and anti-matter. By about 1%, which is pretty close to what this article says. Why is that, though? I don’t know... Beta decay maybe.


5 posted on 11/19/2011 10:54:29 PM PST by Telepathic Intruder (The right thing is not always the popular thing)
[ Post Reply | Private Reply | To 3 | View Replies]

To: HiTech RedNeck

Could the particle measurements only be accounting for enthalpy with no quantitative measure for increasing entropy?


6 posted on 11/19/2011 11:09:39 PM PST by Myrddin
[ Post Reply | Private Reply | To 4 | View Replies]

To: Myrddin

Ya mean, only caring how hot they are but not how disorderly?

I got to confess ignorance how they figure out the speeds of these things. Viewing tracks in a cloud chamber and looking at the kind of track they generate? If they trace out tracks faster than light speed, that ought to say something I’d think.


7 posted on 11/19/2011 11:19:13 PM PST by HiTech RedNeck (bloodwashed not whitewashed)
[ Post Reply | Private Reply | To 6 | View Replies]

To: neverdem

Today, the stars are closer...


8 posted on 11/20/2011 12:18:13 AM PST by BigCinBigD
[ Post Reply | Private Reply | To 1 | View Replies]

SATURDAY NIGHT AT FREE REPUBLIC!

KEEP OUR LIGHTS ON!

Please Donate!!

FReepathon Day 50!!


9 posted on 11/20/2011 12:20:44 AM PST by onyx (PLEASE SUPPORT FREE REPUBLIC BY DONATING NOW! Sarah's New Ping List - tell me if you want on it.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem
physicists demand a statistical certainty of at least five sigma

Could someone please alert ALGORE!!

10 posted on 11/20/2011 3:38:54 AM PST by ALPAPilot
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem
Accepted theories suggest that the big bang should have produced equal amounts of matter and antimatter, which would have soon annihilated each other. Clearly, the balance tipped in favor of normal matter, allowing the creation of everything we see today—but how, no one's sure.

The answer to 'how' is obvious.

Normal Matter is Racist. Yep, its that simple.

After the Big Bang Matter enslaved anti-matter and put it in chains and made it work in the space-time field picking Leptons until it died. And any additional anti-matter that lived in other parts of space free of Normal Matter was eventually invaded. Matter then killed all the Gluons that anti-matter ate and used its hide for clothes and tee-pees, and so much of anti-matter was starved to death. And when all else failed, Matter stole the anti-matter's space by many broken treaties, and then put the survivors on anti-matter reservations to keep them in check.

We need Reparations for Anti-Matter darn it: 'Forty Light Years and a Muon'.

No justice, no peace! No justice, no peace! No justice, no peace! No justice, no ...!

11 posted on 11/20/2011 10:19:29 AM PST by Condor51 (Yo Hoffa, so you want to 'take out conservatives'. Well okay Jr - I'm your Huckleberry)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ALPAPilot; neverdem
physicists demand a statistical certainty of at least five sigma

Could someone please alert ALGORE!!

Funny you should mention that. (Or at least James Hansen by proxy.)

Cheers!

12 posted on 11/21/2011 5:01:59 PM PST by grey_whiskers (The opinions are solely those of the author and are subject to change without notice.)
[ Post Reply | Private Reply | To 10 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson