Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Introducing "Bi-Fi": The Biological Internet
Evolution News and Views ^ | 3 October 2012 | Staff

Posted on 10/09/2012 4:22:38 AM PDT by ShadowAce

Imagine storing books in DNA and sending them across a biological Internet. It's already happening.

As we reported here back in May, bioengineers are realizing that DNA is an excellent storage medium. They've started writing books in DNA letters. Now a research team at Harvard has just announced in Science the "Next-Generation Digital Information Storage in DNA":

Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing. (Emphasis added.)
The Harvard team even used modern programming techniques like addressable blocks and error correction at a substantially lower cost. In addition, their book included JPG images and software code. They see no reason that future attempts couldn't add other programming techniques like parity checks and compression. But do they really need compression? They already achieved 5 petabits per cubic millimeter! That's 1,000 terabits of data -- nearly twice the entire volume of digital records at the Library of Congress1 -- in a cube the size of the space between your thumb and forefinger when you hold them slightly apart.2

There are more reasons they think DNA storage is the wave of the future:

DNA is particularly suitable for immutable, high-latency, sequential access applications such as archival storage. Density, stability, and energy efficiency are all potential advantages of DNA storage, although costs and times for writing and reading are currently impractical for all but century-scale archives. However, the costs of DNA synthesis and sequencing have been dropping at exponential rates of 5- and 12-fold per year, respectively--much faster than electronic media at 1.6-fold per year. Hand-held, single-molecule DNA sequencers are becoming available and would vastly simplify reading DNA-encoded information.
Hand-held? You mean your smartphone might read and write documents in DNA? Why not?

Well, if DNA is the ideal storage medium, how about using it for the Internet? In fact, "Bi-Fi: The Biological Internet" is in development at Stanford School of Medicine.

Obviously DNA cannot travel through the air over many miles like electromagnetic waves do. DNA can, though, travel between cells in packets that carry signals. The Stanford team has made it possible to create arbitrary coded messages that one cell can send across a petri dish to another cell, which can read it.

To do this, researchers took an existing molecular machine, a neutral virus named M13 that parasitizes bacteria without killing them, and gave it a job: take this message and deliver it. Here's how it works:

M13 is a packager of genetic messages. It reproduces within its host, taking strands of DNA -- strands that engineers can control -- wrapping them up one by one and sending them out encapsulated within proteins produced by M13 that can infect other cells. Once inside the new hosts, they release the packaged DNA message.
This packetizing of information sounds eerily similar to our familiar Internet's TCP/IP protocol which puts wrappers around messages and sends them to a target address. The Internet protocol doesn't care about the message itself, just the source and the target addresses on the "envelope." That's true here, too:
The M13-based system is essentially a communication channel. It acts like a wireless Internet connection that enables cells to send or receive messages, but it does not care what secrets the transmitted messages contain. "Effectively, we've separated the message from the channel. We can now send any DNA message we want to specific cells within a complex microbial community," said [Monica] Ortiz, the first author of the study.
But if the DNA packets can't travel between cell phone towers through the air, how can they be useful for the Internet we all use? We're getting there. First, though, think of the possibilities for this inter-cell-net. The Stanford team has sent messages greater than 40,000 bits a distance of 7 centimeters. "That's very long-range communication, cellularly speaking," Ortiz said. So within a hand-held device, DNA storage could easily communicate and collaborate, using M13 packets.
"The ability to communicate 'arbitrary' messages is a fundamental leap -- from just a signal-and-response relationship to a true language of interaction," said Radhika Nagpal, professor of computer science at the Wyss Institute for Biologically Inspired Engineering at Harvard University, who was not involved in the research. "Orchestrating the cooperation of cells to form artificial tissues, or even artificial organisms is just one possibility. This opens a door to new biological systems and solving problems that have no direct analog in nature."
This is really cool. Now, let's put it together. The M13 network could be like a LAN that communicates in DNA packets. It could solve problems just like an in-house computer network, storage and all. Then, if DNA can be translated into electrons by an appropriate interface, the output could become input to the WAN -- the Internet at large -- and sent across the world.

This would provide seamless DNA-to-DNA networking. Note that conversion between dissimilar networks is common in the Internet; that's why Appletalk LANs can communicate with IPv4 or IPv6 and even older standards like IPX/SPX, provided they have the appropriate interfaces. The network protocol only affects the envelope around the message; the information inside the packet remains constant throughout the communication.

So, someday a DNA computer network inside your doctor's hand-held device could solve a complex diagnosis, send it to your smartphone through the air, which would retrieve it and send back your medical history stored in a DNA ebook. The possibilities cannot yet be foreseen:

Ortiz added: "The biological Internet is in its very earliest stages. When the information Internet was first introduced in the 1970s, it would have been hard to imagine the myriad uses it sees today, so there's no telling all the places this new work might lead."
The other thing that is seamless is the end-to-end intelligent design. As we asked earlier, what's the big problem with inferring an intelligent cause for the origin of the "natural" genetic code, since it also involves the encoding and storage of functional information?

References:

1. A Library of Congress blog entry states current digital records amount to 74 terabytes, or 592 terabits converting from 8-bit ASCII bytes.

2. This represents just a small fraction of the information capacity of DNA. In the bonus features of Unlocking the Mystery of Life, Dr. Dean Kenyon states that a cubic millimeter of DNA could store 1018 bits (an exabit), 20 times more than the 5 petabits per mm3 density Harvard achieved.


TOPICS: Technical
KEYWORDS: dna; information; internet

1 posted on 10/09/2012 4:22:44 AM PDT by ShadowAce
[ Post Reply | Private Reply | View Replies]

To: rdb3; Calvinist_Dark_Lord; Salo; JosephW; Only1choice____Freedom; amigatec; stylin_geek; ...

2 posted on 10/09/2012 4:23:43 AM PDT by ShadowAce (Linux -- The Ultimate Windows Service Pack)
[ Post Reply | Private Reply | To 1 | View Replies]

Comment #3 Removed by Moderator

To: ShadowAce

Zowie.


4 posted on 10/09/2012 4:36:46 AM PDT by PapaNew
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce

“We can now send any DNA message we want to specific cells within a complex microbial community,” said [Monica] Ortiz, the first author of the study. “

Sounds like a cure for cancer to me.


5 posted on 10/09/2012 4:38:56 AM PDT by a real Sheila (RYAN/romney 2012)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce
Simply amazing, makes you wonder what is already stored their that we can't yet read.

A bite of the creators apple?

6 posted on 10/09/2012 4:49:23 AM PDT by Kakaze (I want The Republic back !)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce
"Nasty infection you've got there, Bob. The kids bring that home from school?"

"Nope. Hard drive crashed."
7 posted on 10/09/2012 5:00:27 AM PDT by Renderofveils (My loathings are simple: stupidity, oppression, crime, cruelty, soft music. - Nabokov)
[ Post Reply | Private Reply | To 1 | View Replies]

To: a real Sheila
I was wondering about that, myself. If we can send signals to cells now, can we control them? Are the signals merely data, or control signals? Are we replacing the existing data/controls or piggybacking on the main signal?

(Disclaimer: I only read about 1-2 paragraphs before work got in the way--so I posted it real quick)

8 posted on 10/09/2012 5:02:05 AM PDT by ShadowAce (Linux -- The Ultimate Windows Service Pack)
[ Post Reply | Private Reply | To 5 | View Replies]

To: ShadowAce

Great article...incredible research.

Thanks for posting.


9 posted on 10/09/2012 5:04:42 AM PDT by moovova
[ Post Reply | Private Reply | To 1 | View Replies]

To: moovova
"Great article...incredible research."

Note that the article gives no clue as to "how" these miraculous things are going to happen. SOTA of DNA sequencing and synthesis has improved, but it is several orders of magnitude short of being able to do all that this article "promises". IOW, the article is a gigantic piece of hype intended to garner more grant funds for research.

10 posted on 10/09/2012 5:25:46 AM PDT by Wonder Warthog
[ Post Reply | Private Reply | To 9 | View Replies]

To: PapaNew

Just think of what sort viruses we’ll be able to get from the Internet, now.

Lets stick with electronics and quantum computing.


11 posted on 10/09/2012 5:26:45 AM PDT by Little Ray (AGAINST Obama in the General.)
[ Post Reply | Private Reply | To 4 | View Replies]

To: Wonder Warthog

Yeah, I have to admit...the words “government funding” were tugging at the outer edges of my mind as I read the article. I just didn’t give those tugs enough attention because I was so intrigued by the article.


12 posted on 10/09/2012 6:04:58 AM PDT by moovova
[ Post Reply | Private Reply | To 10 | View Replies]

To: ShadowAce

Mr Watson-Crick, come here, I want you!


13 posted on 10/09/2012 6:11:42 AM PDT by HomeAtLast
[ Post Reply | Private Reply | To 1 | View Replies]

To: a real Sheila
“We can now send any DNA message we want to specific cells within a complex microbial community,” said [Monica] Ortiz, the first author of the study."

Or maybe a way to finally drive some sense into Democrats, dupes, fellow-travelers, and other commie cells.

14 posted on 10/09/2012 6:30:13 AM PDT by ProtectOurFreedom
[ Post Reply | Private Reply | To 5 | View Replies]

To: ShadowAce

I can’t seem to recall who invented this DNA thing...Steve Jobs? Bill Gates?

Oh wait, nevermind...It was another miracle performed by the Darwinists’ twin gods Time and Chance.

/s


15 posted on 10/09/2012 6:32:37 AM PDT by LearsFool ("Thou shouldst not have been old, till thou hadst been wise.")
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce

Totally awsome. Thanks for posting. If you have a ping list for such things, I’d like to be on it.


16 posted on 10/09/2012 6:40:13 AM PDT by techcor (I hope Obama succeeds, in being a one term president.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce
The other thing that is seamless is the end-to-end intelligent design. As we asked earlier, what's the big problem with inferring an intelligent cause for the origin of the "natural" genetic code, since it also involves the encoding and storage of functional information?

We find God in the code? Interesting.

17 posted on 10/09/2012 7:45:42 AM PDT by GOPJ (You only establish a feel for the line by having crossed it. - - Freeper One Name)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce

Now this is cool! How soon will Microsoft, apple and google try to patent it so no one else can use DNA?


18 posted on 10/09/2012 7:48:33 AM PDT by for-q-clinton (If at first you don't succeed keep on sucking until you do succeed)
[ Post Reply | Private Reply | To 1 | View Replies]

To: ShadowAce

PFL


19 posted on 10/09/2012 8:04:18 AM PDT by PoloSec ( Believe the Gospel: how that Christ died for our sins, was buried and rose again)
[ Post Reply | Private Reply | To 1 | View Replies]

To: for-q-clinton
How soon will Microsoft, apple and google try to patent it so no one else can use DNA?

And then how long until electronics developed in this manner are banned from flights because of the risk of biological terrorism?
20 posted on 10/09/2012 8:18:16 AM PDT by Renderofveils (My loathings are simple: stupidity, oppression, crime, cruelty, soft music. - Nabokov)
[ Post Reply | Private Reply | To 18 | View Replies]

To: Little Ray

Not to mention cyborgs somewhere in the not-too-distant future. What’s a good “cyborg” movie?


21 posted on 10/09/2012 2:49:19 PM PDT by PapaNew
[ Post Reply | Private Reply | To 11 | View Replies]

To: PapaNew

Haven’t had any interest in cyborgs since the “Six Million Dollar Man.” The original was written by Martin Caidin, so it was pretty darn good. It only declined when they ran out of Caidin’s material.

Of course, IIRC, they doing a remake of it. Have to be the Six Billion dollar man these days, though. A million doesn’t go as far as it used to, esp. in medicine...

In any case, as long you don’t have external input going directly into your brain, you’re probably okay...


22 posted on 10/10/2012 7:34:51 AM PDT by Little Ray (AGAINST Obama in the General.)
[ Post Reply | Private Reply | To 21 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson