Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Gravity waves analysis opens 'completely new sense'
spaceref.com ^ | 29 Oct 02 | Washington Univ

Posted on 10/29/2002 10:42:41 AM PST by RightWhale

Gravity waves analysis opens 'completely new sense'

PRESS RELEASE

Washington University in St. Louis

St. Louis, MO. -- Sometime within the next two years, researchers will detect the first signals of gravity waves -- those weak blips from the far edges of the universe passing through our bodies every second. Predicted by Einstein's theory of general relativity, gravity waves are expected to reveal, ultimately, previously unattainable mysteries of the universe.

Wai-Mo Suen, Ph.D., professor of physics at Washington University in St. Louis is collaborating with researchers nationwide to develop waveform templates to comprehend the signals to be analyzed. In this manner, researchers will be able to determine what the data represent -- a neutron star collapsing, for instance, or black holes colliding.

"In the past, whenever we expanded our band width to a different wavelength region of electromagnetic waves, we found a very different universe," said Suen. "But now we have a completely new kind of wave. It's like we have been used to experiencing the world with our eyes and ears and now we are opening up a completely new sense."

Suen discussed the observational and theoretical efforts behind this new branch of astronomy at the 40th annual New Horizons in Science Briefing, Oct. 27, 2002, at Washington University in St. Louis. The gathering of national and international science writers is a function of the Council for the Advancement of Science Writing.

Gravity waves will provide information about our universe that is either difficult or impossible to obtain by traditional means. Our present understanding of the cosmos is based on the observations of electromagnetic radiation, emitted by individual electrons, atoms, or molecules, and are easily absorbed, scattered, and dispersed. Gravitational waves are produced by the coherent bulk motion of matter, traveling nearly unscathed through space and time, and carrying the information of the strong field space-time regions where they were originally generated, be it the birth of a black hole or the universe as a whole.

This new branch of astronomy was born this year. The Laser Interferometer Gravitational Wave Observatory (LIGO) at Livingston, Louisiana, was on air for the first time last March. LIGO, together with its European counterparts, VIRGO and GEO600, and the outer-space gravitational wave observatories, LISA and LAGOS, will open in the next few years a completely new window to the universe.

Supercomputer runs Einstein equation to get templates

Suen and his collaborators are using supercomputing power from the National Center for Supercomputing Applications at the University of Illinois, Urbana-Champaign, to do numerical simulations of Einstein's equations to simulate what happens when, say, a neutron star plunges into a black hole. From these simulations, they get waveform templates. The templates can be superimposed on actual gravity wave signals to see if the signal has coincidences with the waveform.

"When we get a signal, we want to know what is generating that signal," Suen explained. "To determine that, we do a numerical simulation of a system, perhaps a neutron star collapsing, in a certain configuration, get the waveform and compare it to what we observe. If it's not a match, we change the configuration a little bit, do the comparison again and repeat the process until we can identify which configuration is responsible for the signal that we observe."

Suen said that intrigue about gravity waves is sky-high in the astronomy community.

"Think of it: Gravity waves come to us from the edge of the universe, from the beginning of time, unchanged," he said. "They carry completely different information than electromagnetic waves. Perhaps the most exciting thing about them is that we may well not know what it is we're going to observe. We think black holes, for sure. But who knows what else we might find?"


TOPICS: Culture/Society; Extended News; Foreign Affairs
KEYWORDS: geo600; gravity; lagos; ligo; lisa; realscience; stringtheory; tvf; virgo
Navigation: use the links below to view more comments.
first 1-5051-100101-132 next last
What is the speed of propagation of gravity waves?

For some reason, FReepers have opinions on this.

1 posted on 10/29/2002 10:42:42 AM PST by RightWhale
[ Post Reply | Private Reply | View Replies]

To: RightWhale
Wonder if they'll be able to tell what direction the waves are coming from?
2 posted on 10/29/2002 10:49:41 AM PST by LibWhacker
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
Opinions? It's my opinion that gravity waves are the real cause of my recent weight gain.
3 posted on 10/29/2002 10:51:15 AM PST by DugwayDuke
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
"Scientists are frustrated as they seek to recalibrate their instruments each time Rosie O' take an intercontinental air trip..."
4 posted on 10/29/2002 10:57:17 AM PST by pollwatcher
[ Post Reply | Private Reply | To 1 | View Replies]

To: pollwatcher
"Scientists are frustrated as they seek to recalibrate their instruments each time Rosie O' take an intercontinental air trip..."

Also because such trips should theoretically require an infinite input of energy.

5 posted on 10/29/2002 10:58:41 AM PST by Sloth
[ Post Reply | Private Reply | To 4 | View Replies]

To: RightWhale
"What is the speed of propagation of gravity waves?"

Gravity waves travel at "c", i.e., light speed.

Some people, notably Tom Van Flandern and cohorts have advanced the position that gravity must propagate at infinite velocity. Their arguments are based on straightforward--and unfortunately incorrect--interpretations of classical dynamics. These arguments produce the conclusion that if gravity travelled at any finite velocity, the Solar System would be unstable and all of the planets would be accelerated out of the system by the "couple" (of forces) resulting from finite gravity propagation.

This position has been refuted by appeal to both special and general relativity. These theories show that gravity waves will radiate any "excess energy" and hence excess angular momentum, in precisely the correct amounts to keep the planets in their appointed orbits.

--Boris

6 posted on 10/29/2002 11:02:16 AM PST by boris
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
Gravity waves CANNOT travel at the speed of light because they are too heavy.
7 posted on 10/29/2002 11:12:47 AM PST by Blood of Tyrants
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker
what direction the waves are coming from?

If they can detect gravity waves at several separated sites around earth, and if gravity waves propagate at a finite speed, they should be able to see where the gravity wave came from in a general sense. If they detect the gravity wave at 4 sites not coplanar they should be able to narrow down the direction in spherical space. I don't know what angular resolution they expect.

8 posted on 10/29/2002 11:15:09 AM PST by RightWhale
[ Post Reply | Private Reply | To 2 | View Replies]

To: *RealScience
http://www.freerepublic.com/perl/bump-list
9 posted on 10/29/2002 11:17:33 AM PST by Free the USA
[ Post Reply | Private Reply | To 7 | View Replies]

To: RightWhale
This was all predicted by Gene Roddenberry (and Harlan Ellison) years ago in the Emmy nominated Star Trek episode, "The City on the Edge of Forever".

The Enterprise discovered the existence of The Guardian time portal device mainly because of extremely intense gravity waves emmanating from a distant planet.

Another case of life imitating art.

10 posted on 10/29/2002 11:18:24 AM PST by Bloody Sam Roberts
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
"We get signal"
11 posted on 10/29/2002 11:21:17 AM PST by bribriagain
[ Post Reply | Private Reply | To 1 | View Replies]

To: Bloody Sam Roberts
"The Hunt for Zero Point" (inside the classified world of antigravity technology) by Nick Cook, former aviation editor at Jane's Defence Weekly. Worth the time...
12 posted on 10/29/2002 11:27:42 AM PST by GOPJ
[ Post Reply | Private Reply | To 10 | View Replies]

To: Bloody Sam Roberts
Uh, no. Gravity waves were predicted in 1915. COTEOF was written in the late 60s. And some might question whether the "time waves" encountered by Enterprise are the same as the "gravity waves" we know today -- especially since there were no obvious changes in the planet's gravitational field once the landing party beamed down.
13 posted on 10/29/2002 11:32:51 AM PST by Caesar Soze
[ Post Reply | Private Reply | To 10 | View Replies]

To: CapandBall
Future science ping.
14 posted on 10/29/2002 11:34:55 AM PST by m1911
[ Post Reply | Private Reply | To 1 | View Replies]

To: Bloody Sam Roberts
we may well not know what it is we're going to observe

This might be hard to believe, especially in the case of Harlan Ellison, but gravity scientists might see something entirely unsuspected. It could happen, and seems to happen often when new instruments of new design are used for the first time to examine things never seen before. Scientists live for this.

15 posted on 10/29/2002 11:38:53 AM PST by RightWhale
[ Post Reply | Private Reply | To 10 | View Replies]

To: LibWhacker
Nobody has ever successfully detected a gravitational wave. They are a theoretical prediction, but of an effect so small that detecting them is very difficult. If they are there as predicted, and detectors sensitive enough to record them reliably are produced, then you are most of the way there.

The next step is to arrange detectors and use the differences in signal at different ones to map out what waves you are receiving, where and when. But it is obviously much harder to get a good picture of a one-off, transient phenomenon that way, than a picture of a steady source.

Strong gravitational waves are easier to imagine getting produced in a transient rather than a continual source. Gravity tends to rapidly smush things into symmetric shapes that thereafter produce uniform gravity, and only changes in gravity produce gravitational waves. A gravity wave is a propogating "ripple" in space-time itself.

The wildcard is that we know that our theory of gravity probably leaves something out, in details. There is no consistent quantum theory of gravity. We only know our gravity theory checks out for large scale phenomenon. But wave -propagation- may depend in some respects on small scale phenomenon.

Mathematically, they integrate a bunch of infinitessimals without really knowing how the infinitessimal scale looks. For large scale and continuous enough properties, that has always worked so far. But supposedly sensitive gravity wave detectors have been around for a while now, and nobody has actually seen one with them, to date.

The detection schemes are getting better, and obviously as the article shows they have high hopes. We shall see, and that is always fun...

16 posted on 10/29/2002 11:43:14 AM PST by JasonC
[ Post Reply | Private Reply | To 2 | View Replies]

To: RightWhale
Am I missing something? This article basically says "Einstein predicted these things exist, we have never actually observed them. But we probably will within two years (no real explanation of how or why we are so confident of that). And by the way, they are going to be amazing".

Basically it says something might be detected someday. I beleive the title is overstating the real situation a bit. Interesting though.

17 posted on 10/29/2002 11:46:23 AM PST by pepsi_junkie
[ Post Reply | Private Reply | To 1 | View Replies]

To: JasonC
I should add that one can certainly imagine all kinds of continual sources of gravity waves. They just tend to be weaker phenomenon than some potential transient sources. And there is indirect evidence to support the idea of gravitational waves, for instance observed "spin down" of binary pulsars (changes in their period), which are attributed to loss of energy by gravitational radiation. But there is nothing quite like directly detecting a predicted phenomenon, instead of infering it.
18 posted on 10/29/2002 11:51:34 AM PST by JasonC
[ Post Reply | Private Reply | To 16 | View Replies]

To: JasonC; RightWhale
But supposedly sensitive gravity wave detectors have been around for a while now, and nobody has actually seen one with them, to date.

And that in itself is rather amazing to me; because doesn't a star collapse into a neutron star or a black hole at least once a day somewhere out there in the universe? Or two black holes merge, say?

Well, I'm looking forward to it, whatever "it" is. I'm sure there will be some surprises; there always are. :-)

Thanks, RW! Makes perfect sense.

19 posted on 10/29/2002 12:08:00 PM PST by LibWhacker
[ Post Reply | Private Reply | To 16 | View Replies]

To: pepsi_junkie
True enough, it is expressing great confidence in what new detectors will be able to see, where previous less sensitive ones failed to detect anything.

I can explain the scheme of the new detector ideas, which are pretty clever. They are looking for tiny changes in space-time that propogate through the whole detector. They need a combination of a minute sensitivity with a large scale to gather a wide portion of a gradual effect. Something small would have the former, but not the latter, and thus fail. Something large would have the latter, not the former, and thus fail. They need to span as many orders of magnitude as possible between the small and the large.

Their solution is three spacecraft millions of miles apart pointing laser rangefinders at each other, able to detect changes in their distance apart down to a billioneth of a centimeter, based on changes in the interference of the laser light with split portions of itself. The scheme thus spans 24 orders of magnitude.

They need to use three in order to use a "base" pair to correct for changes in distance between each other pair due to other causes. (Otherwise put, with just two they would "drift" farther and closer due to random collisions with interstellar particles, etc, and so generate false signals).

More details on the scheme here -

http://lisa.jpl.nasa.gov/whatis.html

20 posted on 10/29/2002 12:17:52 PM PST by JasonC
[ Post Reply | Private Reply | To 17 | View Replies]

To: RightWhale; PatrickHenry; Quila; Rudder; donh; VadeRetro; RadioAstronomer; Travis McGee; ...
((((((growl)))))



21 posted on 10/29/2002 12:25:54 PM PST by Sabertooth
[ Post Reply | Private Reply | To 1 | View Replies]

To: DugwayDuke
It's my opinion that gravity waves are the real cause of my recent weight gain.

Or, keep you from walking a straight line in a roadside sobriety test ;-)

22 posted on 10/29/2002 12:41:41 PM PST by varon
[ Post Reply | Private Reply | To 3 | View Replies]

To: RightWhale
I'll turn seventy on election day, I have become very knowledgible of gravytie stains, not to mention my poor shirt when not wearing a tie.
23 posted on 10/29/2002 12:41:49 PM PST by F.J. Mitchell
[ Post Reply | Private Reply | To 1 | View Replies]

To: boris
How do gravity waves escape black holes?
24 posted on 10/29/2002 12:54:32 PM PST by Barry Goldwater
[ Post Reply | Private Reply | To 6 | View Replies]

To: pollwatcher
"Scientists are frustrated as they seek to recalibrate their instruments each time Rosie O' take an intercontinental air trip..."

It's when she jumps up and down that their instruments go crazy...

25 posted on 10/29/2002 12:57:19 PM PST by yendu bwam
[ Post Reply | Private Reply | To 4 | View Replies]

To: yendu bwam
It's when she jumps up and down that their instruments go crazy...

....or you could visualize Jerrold Nadler playing hopscotch.

Barf.

26 posted on 10/29/2002 1:28:14 PM PST by oldsalt
[ Post Reply | Private Reply | To 25 | View Replies]

To: oldsalt
....or you could visualize Jerrold Nadler playing hopscotch. Barf.

When he does, they'll be a gravity wave tsunami that will hit Andromeda galaxy in a few hundred thousand years.

27 posted on 10/29/2002 1:30:15 PM PST by yendu bwam
[ Post Reply | Private Reply | To 26 | View Replies]

To: RightWhale
BUMP for later reading
28 posted on 10/29/2002 1:39:58 PM PST by AFreeBird
[ Post Reply | Private Reply | To 1 | View Replies]

To: AFreeBird
Please, no BUMPING in the vicinity of the gravity wave detector.
29 posted on 10/29/2002 1:48:35 PM PST by RightWhale
[ Post Reply | Private Reply | To 28 | View Replies]

To: RightWhale
I'm not sure how useful it would be.

In all likelyhood the events would be hundreds of lightyears away making the propagation sphere a planer phenomena when it strikes Earth assuming the "wave" has any discernable energy to be measured.

At near-lightspeed velocities and a relatively small window to observe the arc, the "difference" would be measurable in nanoseconds or less - under the assumption that Earth and/or its magnetic field doesn't distort the wave.

Probably just a scientist trying to drum up funding for his research. Not that I disagree with it, it could prove very useful someday.
30 posted on 10/29/2002 1:54:33 PM PST by Jake0001
[ Post Reply | Private Reply | To 8 | View Replies]

To: Jake0001
it could prove very useful someday.

Of course. At this time nobody would know. So it is science, looking for new data. If they were developing something specific that used gravity waves to do something useful, that would be engineering. Science is finding new things all the time, not all of it has immediate application, but we keep looking and will keep looking until nothing new is found. Then we're done. Like physics was thought to be done 100 years ago. Except it wasn't done at all.

31 posted on 10/29/2002 2:00:58 PM PST by RightWhale
[ Post Reply | Private Reply | To 30 | View Replies]

To: Barry Goldwater
Is there a black hole in the middle of Uranus?
32 posted on 10/29/2002 2:01:42 PM PST by Ranger
[ Post Reply | Private Reply | To 24 | View Replies]

To: RightWhale
"Think of it: Gravity waves come to us from the edge of the universe, from the beginning of time, unchanged," he said. "They carry completely different information than electromagnetic waves. Perhaps the most exciting thing about them is that we may well not know what it is we're going to observe. We think black holes, for sure. But who knows what else we might find?"

If gravity propagates at the speed of light, we wouldn't be able to detect gravity waves "from the beginning of time". If gravity propagates considerably faster than the speed of light, we certainly couldn't detect anything from the beginning of time, though in either case one could detect something from the edge of the universe, providing there actually is an edge. If there were an edge, though, it wouldn't be the same thing as the beginning of time.
33 posted on 10/29/2002 2:15:56 PM PST by aruanan
[ Post Reply | Private Reply | To 1 | View Replies]

To: aruanan
Get this: Everything you see and everything you are is the gravity wave from the event at the beginning of the universe crossing in constructive and destructive interference with itself from all directions RIGHT HERE! Unless you wish to consider the 4-plex manifold. In that case you can add RIGHT NOW! Like selling used cars. :)
34 posted on 10/29/2002 2:23:42 PM PST by RightWhale
[ Post Reply | Private Reply | To 33 | View Replies]

To: RightWhale
Everything you see and everything you are is the gravity wave from the event at the beginning of the universe crossing in constructive and destructive interference with itself from all directions RIGHT HERE

Assuming there was a beginning, a proposition (in the Big Bang sense) that is less than certain.
35 posted on 10/29/2002 2:27:06 PM PST by aruanan
[ Post Reply | Private Reply | To 34 | View Replies]

To: RightWhale; boris
Gravity is the Energy of a Mass, therefore

G=EM

Since we already know that E=MC^2, we can solve for G, giving us G=C^2.

So Gravity is the speed of light squared (just try to ignore the dimensional consistency/inconsistency aspects of that equation).

36 posted on 10/29/2002 2:37:17 PM PST by Southack
[ Post Reply | Private Reply | To 1 | View Replies]

To: Barry Goldwater; Physicist
"How do gravity waves escape black holes?"

I defer to Physicist.

My meager understanding is that they don't. The gravitational field around a black hole is a "fossilized" remnant of the original star.

This begs the question: as a black hole sucks in more mass, it gets bigger and thus should have "more" gravity than prior to injestion of more mass. I suspect the answer is that the gravitation (gravitons, gravity waves) originate at the event horizon, not the geometric center of the hole.

Other than that, all I can say is that I have wondered about this question myself.

--Boris

37 posted on 10/29/2002 2:39:03 PM PST by boris
[ Post Reply | Private Reply | To 24 | View Replies]

To: aruanan
Obviously the gravity wave interference pattern is of a slowly evolving standing wave. That is, either you are not at the center or the Big Bang is not a singularity at some distant time and space, but continuous throughout all time and space. This is in no way comparable to the Hoyle Steady State model. Probably we can use some variant of the least squares method, possibly Chebyshev polynomials or Fourier series to attempt to model. We'll need some CPU time; perhaps a Federal grant. Or scribble some incomprehensible tensor equation and take the rest of the day off.
38 posted on 10/29/2002 2:46:39 PM PST by RightWhale
[ Post Reply | Private Reply | To 35 | View Replies]

To: RightWhale
To those of you who are really interested in the subject(not those of you who made the smartass remarks), I recommend the following book: "The Elegant Universe: Superstrings, Hidden Dimensions, the Quest for the Ultimate Theory" by Brian Greene, W.W. Norton & Company, 500 Fifth Avenue, New York, NY, 10110.

It's heavy going, about 450 pages, but really interesting.

Cheers and happy reading.

B14

39 posted on 10/29/2002 2:53:06 PM PST by BLASTER 14
[ Post Reply | Private Reply | To 1 | View Replies]

To: Southack
G=EM

What is the indicial order of the equation? We'll need at least three noncoplanar potential vectors.

40 posted on 10/29/2002 2:53:40 PM PST by RightWhale
[ Post Reply | Private Reply | To 36 | View Replies]

To: RightWhale
Obviously these newly discovered waves disprove evolution.
41 posted on 10/29/2002 3:14:55 PM PST by rmmcdaniell
[ Post Reply | Private Reply | To 1 | View Replies]

To: rmmcdaniell
these newly discovered waves disprove evolution

On the contrary, they prove that more local public funds need to be allocated to science education in public schools, and that the Federal Dept of Education should be disbanded.

42 posted on 10/29/2002 3:18:19 PM PST by RightWhale
[ Post Reply | Private Reply | To 41 | View Replies]

To: Barry Goldwater
How do gravity waves escape black holes?

Excellent question. If they have mass (do they?), presumably they can't escape. But obviously a black hole generates (so to speak) a lot of gravity, so ... as I said, an excellent question.

43 posted on 10/29/2002 3:27:49 PM PST by PatrickHenry
[ Post Reply | Private Reply | To 24 | View Replies]

To: oldsalt
Jerry Nadler playing hopscotch would not be detected on the instrumentation needed to detect gravity waves, seismographic equiptment to detect underground nuke tests on the other hand would in fact go nuts
44 posted on 10/29/2002 5:19:29 PM PST by Nebr FAL owner
[ Post Reply | Private Reply | To 26 | View Replies]

To: DugwayDuke
Opinions? It's my opinion that gravity waves are the real cause of my recent weight gain.

The square the sine of gravity waves = gravy waves/2(pork chops x mashed potatoes) + 3(high gravity Steel Reserves).....

And that is the real cause of my recent weight gain.....

45 posted on 10/29/2002 5:28:39 PM PST by freebilly
[ Post Reply | Private Reply | To 3 | View Replies]

To: Barry Goldwater; boris; PatrickHenry
How do gravity waves escape black holes?

We need to be careful to distinguish between the gravitational field and gravitational waves.

The gravitational field is fixed to the black hole. In a nutshell, the gravitational field is the curvature of spacetime caused by the black hole. This curvature is defined everywhere in space, all the way up to the singularity at the center of the black hole; it is even defined inside the event horizon.

Gravitational waves are changes in the gravitational field. If a black hole is accelerated, obviously the field as it exists at some arbitrary point is going to change over time. This is perfectly analogous to the way electromagnetic waves are caused by the acceleration of electrical charges. If you move a charge around, the field associated with that charge will also be moved around. These changes in the field are propagated as a wave.

So in answer to your question, don't think of gravitational waves as radiating outward from a black hole like light from a bulb; rather, think of the gravitational field as being fixed to the black hole, with changes in the motion of the black hole thereby causing changes in the field.

46 posted on 10/29/2002 7:18:53 PM PST by Physicist
[ Post Reply | Private Reply | To 24 | View Replies]

To: PatrickHenry; Barry Goldwater; boris
If they have mass (do they?),

The fact of the inverse square law of gravity demands that gravitational radiation be massless.

presumably they can't escape.

Light is massless, but still that can't escape from a black hole.

You need to think in terms of inertial frames. Event horizons, for example, exist between locations not because there is some physical barrier between them, but because the difference between the inertial frames exceeds the speed of light. Signals from one point to the other can't run fast enough to catch up. It's a question of point-of-view.

Gravitational waves are also a point-of-view thing. The Earth, for example, radiates gravitational waves into space as it whips around the sun. The planet Mars, for example, feels (however feebly) the changing gravitational field of the Earth as it wobbles back and forth in its orbit. We here on Earth, however, can't feel those waves. It doesn't make sense to talk about measuring them as they travel from the center of the Earth on their way to Mars, for the simple fact that the waves don't travel along any such path. From where we're sitting, the gravitational field of the Earth doesn't change at all; there are no such waves to measure, from our point-of-view.

47 posted on 10/29/2002 7:33:06 PM PST by Physicist
[ Post Reply | Private Reply | To 43 | View Replies]

To: RightWhale
What is the speed of propagation of gravity waves?

No higher than the speed of light...unless Einstein was wrong about the fundamental assumption in his relativity theories. Of course if he was then using his theories to predict the shape of gravity waves would seem to not be very productive. Regardless, we are bound to learn something from all this.

48 posted on 10/29/2002 8:52:16 PM PST by El Gato
[ Post Reply | Private Reply | To 1 | View Replies]

To: Jake0001
You seem to have the wrong picture here. Yes the wave will be nearly planer, I least hope so, becuase if it wasn't that would mean something bad happened really near by. But planer waves still have direction of propagation, it's perpindicular to the "plane". Stations not coplaner with the wavefront will still see the wavefront at different times. Those time differences are what allows for determinations of direction. It's the same principle that interferometers work on, although those deal with continuous type waves, rather than a wave front per se. The radar seeker heads and tracking radars in aircraft almost all use a similar interferometer, albeit one with "different" signal processing. We radar folks call it "monopulse", for historical reasons.

49 posted on 10/29/2002 9:05:14 PM PST by El Gato
[ Post Reply | Private Reply | To 30 | View Replies]

Comment #50 Removed by Moderator


Navigation: use the links below to view more comments.
first 1-5051-100101-132 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson