Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Scientists find missing link between whale and its closest relative, the hippo
UC Berkeley News ^ | 24 January 2005 | Robert Sanders, Media Relations

Posted on 02/08/2005 3:50:43 AM PST by PatrickHenry

click here to read article


Navigation: use the links below to view more comments.
first 1-5051-100101-150151-200 ... 2,201-2,242 next last
If you feel that you must post Hillary jokes and pics, please address them to someone other than me.
1 posted on 02/08/2005 3:50:44 AM PST by PatrickHenry
[ Post Reply | Private Reply | View Replies]

To: VadeRetro; Junior; longshadow; RadioAstronomer; Doctor Stochastic; js1138; Shryke; RightWhale; ...
EvolutionPing
A pro-evolution science list with over 230 names. See list's description at my homepage. FReepmail to be added/dropped.

2 posted on 02/08/2005 3:51:57 AM PST by PatrickHenry (<-- Click on my name. The List-O-Links for evolution threads is at my freeper homepage.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry

O.K....does this finally explain Oprah Winfrey?....


3 posted on 02/08/2005 3:54:13 AM PST by Route101
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry
is this the missing link?


4 posted on 02/08/2005 3:56:51 AM PST by sure_fine (*not one to over kill the thought process*)
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry

Amazing! Whales were always whales and hippos were always hippos. Are there any other theories that has promoted as much searching for evidence to support it than evolution? They're really stretching here.

When a species had to develop a defense measure to keep from being wiped out by predators this susposedly took millions of years, they must have been in hiding wating for armor, wings, poison glands or whatever to develop.

I assure you, all of our ancestors were fully human.


5 posted on 02/08/2005 4:01:25 AM PST by HankReardon
[ Post Reply | Private Reply | To 1 | View Replies]

To: sure_fine

Jesus man, have you no shame!!! Barf Alert REQUIRED


6 posted on 02/08/2005 4:04:09 AM PST by Time is now (We'll live to see it......Does anyone see it yet?....)
[ Post Reply | Private Reply | To 4 | View Replies]

To: PatrickHenry

Somehow, a legless man chasing a white hippo just does not sound like a timeless classic to me.
"From Hell's heart I stab at the.....thou dammed hippo!"


7 posted on 02/08/2005 4:05:27 AM PST by Ruy Dias de Bivar (When someone burns a cross on your lawn, the best firehose is an AK-47.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: HankReardon

Agreed!


8 posted on 02/08/2005 4:06:06 AM PST by mlc9852
[ Post Reply | Private Reply | To 5 | View Replies]

To: PatrickHenry

hippopotamus=
hippo: Greek for horse
potamo: Greek for river

hence "river horse"


9 posted on 02/08/2005 4:06:34 AM PST by bobjam
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry
A major roadblock to linking whales with hippos was the lack of any fossils that appeared intermediate between the two.

But wait...I thought evolution didn't make predictions, and therefore wasn't testable!

10 posted on 02/08/2005 4:07:30 AM PST by Physicist
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry
I propose a new classification: the "boombalattotheres".
11 posted on 02/08/2005 4:08:45 AM PST by Physicist
[ Post Reply | Private Reply | To 1 | View Replies]

To: HankReardon

Maybe it's because the evidence is so abundant


12 posted on 02/08/2005 4:09:11 AM PST by neutrality
[ Post Reply | Private Reply | To 5 | View Replies]

To: PatrickHenry
Notice the tree. They don't really have a common ancestor, both animals are shown in the branches.

TrueOrigin Whales

Darwin Refuted

Whale of a tale

13 posted on 02/08/2005 4:10:08 AM PST by DannyTN
[ Post Reply | Private Reply | To 1 | View Replies]

To: Physicist
Oh, somebody saw a blubbering hippo and made a connection
14 posted on 02/08/2005 4:11:19 AM PST by Cowman
[ Post Reply | Private Reply | To 10 | View Replies]

To: PatrickHenry

Another fascinating point on this are the peccaries -- they resemble pigs at least that's what the books say (I've never seen one in real life), but what's the differentiating factors?


15 posted on 02/08/2005 4:11:59 AM PST by Cronos (Never forget 9/11)
[ Post Reply | Private Reply | To 1 | View Replies]

To: HankReardon

All these years on the crevo threads and you've learned nothing new. Militant, willful ignorance.


16 posted on 02/08/2005 4:12:06 AM PST by Junior (FABRICATI DIEM, PVNC)
[ Post Reply | Private Reply | To 5 | View Replies]

To: sure_fine

Too slow to be related to the hippo, and too stupid to be related to the whale. I believe it has evolved from the Old Bushmills species.


17 posted on 02/08/2005 4:13:41 AM PST by speedy
[ Post Reply | Private Reply | To 4 | View Replies]

To: PatrickHenry

And in further research it was found that Michael Moore is related to a pig and moron.


18 posted on 02/08/2005 4:13:58 AM PST by crazycat
[ Post Reply | Private Reply | To 1 | View Replies]

To: Route101

There's a Helen Thomas joke in here somewhere.


19 posted on 02/08/2005 4:14:08 AM PST by JusPasenThru (http://giinthesky.blogspot.com/)
[ Post Reply | Private Reply | To 3 | View Replies]

To: sure_fine

Thanks, now I have to clean the coffee from between the keys!


20 posted on 02/08/2005 4:14:43 AM PST by Tensgrrl
[ Post Reply | Private Reply | To 4 | View Replies]

To: PatrickHenry

I bet the first whale that jumped on the beach and suddenly started breathing air only did so to get away from all of his pals and their cruel jokes about his freakish half hippo appearance.


21 posted on 02/08/2005 4:18:47 AM PST by Jaysun (Nefarious deeds for hire.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: spetznaz

pong


22 posted on 02/08/2005 4:21:54 AM PST by nuconvert (No More Axis of Evil by Christmas ! TLR)
[ Post Reply | Private Reply | To 1 | View Replies]

To: HankReardon

"I assure you, all of our ancestors were fully human."

I assure you, you are wrong. Evolution is a fact.


23 posted on 02/08/2005 4:27:53 AM PST by shubi (Peace through superior firepower.)
[ Post Reply | Private Reply | To 5 | View Replies]

To: Jaysun

Another candidate for remedial biology.


24 posted on 02/08/2005 4:31:21 AM PST by shubi (Peace through superior firepower.)
[ Post Reply | Private Reply | To 21 | View Replies]

To: Jaysun
the first whale that jumped on the beach and suddenly started breathing air

ALL whales breathe air.

25 posted on 02/08/2005 4:34:42 AM PST by VisualizeSmallerGovernment (Question Liberal Authority)
[ Post Reply | Private Reply | To 21 | View Replies]

To: PatrickHenry
"There is a 40-million-year gap between fossils of early cetaceans and early hippos"

There you have it - if given enough time my 65 Ford Mustang could evolve to be a fruit fly. They say "life" somehow sprang from un-life so it'll eventually work out the problems.

26 posted on 02/08/2005 4:37:11 AM PST by patriot_wes (When I see two guys kissin..argh! Is puking a hate crime yet?)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Jaysun

Ummmm....

You've got things a bit reversed. Land animals didn't evolve from whales. Whales evolved from land animals.


27 posted on 02/08/2005 4:41:33 AM PST by Strategerist
[ Post Reply | Private Reply | To 21 | View Replies]

To: Strategerist

Or did they?? hmmmm

yes they did is the answer


28 posted on 02/08/2005 4:42:04 AM PST by bobdsmith
[ Post Reply | Private Reply | To 27 | View Replies]

To: PatrickHenry

Scientists find missing link between Janeane Garofolo and her nearest relative Roseanne Barr.
Both are fat and unfunny.


29 posted on 02/08/2005 4:50:01 AM PST by sgtbono2002
[ Post Reply | Private Reply | To 1 | View Replies]

To: VisualizeSmallerGovernment; shubi
Another candidate for remedial biology.

ALL whales breathe air.

Give me a friggen break. I rewrote that several times because I couldn't articulate my thoughts. I know that whales breath air.
30 posted on 02/08/2005 4:51:29 AM PST by Jaysun (Nefarious deeds for hire.)
[ Post Reply | Private Reply | To 25 | View Replies]

To: Strategerist
Whales evolved from land animals.

No they didn't. Whales evolved from whales.
31 posted on 02/08/2005 4:53:39 AM PST by Jaysun (Nefarious deeds for hire.)
[ Post Reply | Private Reply | To 27 | View Replies]

To: PatrickHenry

nice to see genetics beginning to take over where morphological taxonomy drops the ball.


32 posted on 02/08/2005 4:58:02 AM PST by King Prout (Remember John Adam!)
[ Post Reply | Private Reply | To 2 | View Replies]

To: patriot_wes
They say "life" somehow sprang from un-life so it'll eventually work out the problems.

Who are "they?" How's that deception thing working out for you?

33 posted on 02/08/2005 5:06:07 AM PST by laredo44 (Liberty is not the problem)
[ Post Reply | Private Reply | To 26 | View Replies]

To: sure_fine

whale

Hippo

34 posted on 02/08/2005 5:07:48 AM PST by AmericanMade1776 ( The Year of Freeping Dangerously)
[ Post Reply | Private Reply | To 4 | View Replies]

To: PatrickHenry

for later


35 posted on 02/08/2005 5:10:10 AM PST by Aloysius88 ( Tagline suspended for reconsideration.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Jaysun
Whales evolved from whales.

Yep. Whales evolved from primitive land whales (aka pakiceti) that looked something like this:


36 posted on 02/08/2005 5:10:20 AM PST by AntiGuv ()
[ Post Reply | Private Reply | To 31 | View Replies]

To: HankReardon; mlc9852; DannyTN; Cowman; shubi; PatrickHenry; patriot_wes; bobdsmith; Jaysun; ...
Amazing! Whales were always whales and hippos were always hippos.

No they werent. Here are just a few of the many things you're extremely ignorant of on this topic:

(From Plagiarized Errors and Molecular Genetics)

.

A particularly impressive example of shared retroposons has recently been reported linking cetaceans (whales, dolphins and porpoises) to ruminants and hippopotamuses, and it is instructive to consider this example in some detail. Cetaceans are sea-living animals that bear important similarities to land-living mammals; in particular, the females have mammary glands and nurse their young. Scientists studying mammalian anatomy and physiology have demonstrated greatest similarities between cetaceans and the mammalian group known as artiodactyls (even-toed ungulates) including cows, sheep, camels and pigs. These observations have led to the evolutionist view that whales evolved from a four-legged artiodactyl ancestor that lived on land. Creationists have capitalized on the obvious differences between the familiar artiodactyls and whales, and have ridiculed the idea that whales could have had four-legged land-living ancestors. Creationists who claim that cetaceans did not arise from four-legged land mammals must ignore or somehow dismiss the fossil evidence of apparent whale ancestors looking exactly like one would predict for transitional species between land mammals and whales--with diminutive legs and with ear structures intermediate between those of modern artiodactyls and cetaceans (Nature 368:844,1994; Science 263: 210, 1994). (A discussion of fossil ancestral whale species with references may be found at http://www.talkorigins.org/faqs/faq-transitional/part2b.html#ceta) Creationists must also ignore or dismiss the evidence showing the great similarity between cetacean and artiodactyl gene sequences (Molecular Biology & Evolution 11:357, 1994; ibid 13: 954, 1996; Gatesy et al, Systematic Biology 48:6, 1999).

Recently retroposon evidence has solidified the evolutionary relationship between whales and artiodactyls. Shimamura et al. (Nature 388:666, 1997; Mol Biol Evol 16: 1046, 1999; see also Lum et al., Mol Biol Evol 17:1417, 2000; Nikaido and Okada, Mamm Genome 11:1123, 2000) studied SINE sequences that are highly reduplicated in the DNA of all cetacean species examined. These SINES were also found to be present in the DNA of ruminants (including cows and sheep) but not in DNA of camels and pigs or more distantly related mammals such as horse, elephant, cat, human or kangaroo. These SINES apparently originated in a specific branch of ancestral artiodactyls after this branch diverged from camels, pigs and other mammals, but before the divergence of the lines leading to modern cetaceans, hippopotamus and ruminants. (See Figure 5.) In support of this scenario, Shimamura et al. identified two specific insertions of these SINES in whale DNA (insertions B and C in Figure 5) and showed that in DNA of hippopotamus, cow and sheep these same two sites contained the SINES; but in camel and pig DNA the same sites were "empty" of insertions. More recently, hippopotamus has been identified as the closest living terrestrial relative of cetaceans since hippos and whales share retroposon insertions (illustrated by D and E in Figure 5) that are not found in any other artiodactyls (Nikaido et al, PNAS 96:10261, 1999). The close hippo-whale relationship is consistent with previously reported sequence similarity comparisons (Gatesy, Mol Biol Evol 14:537, 1997) and with recent fossil finds (Gingerich et al., Science 293:2239, 2001; Thewissen et al., Nature 413:277, 2001) that resolve earlier paleontological conflicts with the close whale-hippo relationship. (Some readers have wondered: if ruminants are more closely related to whales than to pigs and camels, why are ruminants anatomically more similar to pigs and camels than they are to whales? Apparently this results from the fact that ruminants, pigs and camels changed relatively little since their last common ancestor, while the cetacean lineage changed dramatically in adapting to an aquatic lifestyle, thereby obliterating many of the features -- like hooves, fur and hind legs -- that are shared between its close ruminant relatives and the more distantly related pigs and camels. This scenario illustrates the fact that the rapid evolutionary development of adaptations to a new niche can occur through key functional mutations, leaving the bulk of the DNA relatively unchanged. The particularly close relationship between whales and hippos is consistent with several shared adaptations to aquatic life, including use of underwater vocalizations for communication and the absence of hair and sebaceous glands.) Thus, retroposon evidence strongly supports the derivation of whales from a common ancestor of hippopotamus and ruminants, consistent with the evolutionary interpretation of fossils and overall DNA sequence similarities. Indeed, the logic of the evidence from shared SINEs is so powerful that SINEs may be the best available characters for deducing species relatedness (Shedlock and Okada, Bioessays 22:148, 2000), even if they are not perfect (Myamoto, Curr. Biology 9:R816, 1999).

SINE insertions as tracers for phylogeny

Figure 5. Specific SINE insertions can act as "tracers" that illuminate phylogenetic relationships. This figure summarizes some of the data on SINEs found in living artiodactyls and shows how the shared insertions can be interpreted in relation to evolutionary branching. A specific SINE insertion event ("A" in the Figure) apparently occurred in a primitive common ancestor of pigs, ruminants, hippopotamus and cetaceans, since this insertion is present in these modern descendants of that common ancestor; but it is absent in camels, which split off from the other species before this SINE inserted. More recent insertions B and C are present only in ruminants, hippopotamus and cetaceans. Insertions D and E are shared only by hippopotamus and cetaceans, thereby identifying hippopotamus as the closest living relative of cetaceans (at least among the species examined in these studies). SINE insertions F and G occurred in the ruminant lineage after it diverged from the other species; and insertions H and I occurred after divergence of the cetacean lineage.

That's just a quick layman-level overview of *one* of the many ways that whale evolution has been verified. For more technical examinations along several independent lines of evidence, see for example:
SINE Evolution, Missing Data, and the Origin of Whales

Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: Hippopotamuses are the closest extant relatives of whales

Evidence from Milk Casein Genes that Cetaceans are Close Relatives of Hippopotamid Artiodactyls

Analyses of mitochondrial genomes strongly support a hippopotamus±whale clade

A new, diminutive Eocene whale from Kachchh (Gujarat, India) and its implications for locomotor evolution of cetaceans

A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales

Mysticete (Baleen Whale) Relationships Based upon the Sequence of the Common Cetacean DNA Satellite1

The Mitochondrial Genome of the Sperm Whale and a New Molecular Reference for Estimating Eutherian Divergence Dates

Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss

Eocene evolution of whale hearing

Novel Phylogeny of Whales Revisited but Not Revised

Land-to-sea transition in early whales: evolution of Eocene Archaeoceti (Cetacea) in relation to skeletal proportions and locomotion of living semiaquatic mammals

Subordinal artiodactyl relationships in the light of phylogenetic analysis of 12 mitochondrial protein-coding genes

New Morphological Evidence for the Phylogeny of Artiodactyla, Cetacea, and Mesonychidae

Cetacean Systematics

LIKELIHOOD ESTIMATION OF THE TIME OF ORIGIN OF CETACEA AND THE TIME OF DIVERGENCE OF CETACEA AND ARTIODACTYLA

Phylogenetic Relationships of Artiodactyls and Cetaceans as Deduced from the Comparison of Cytochrome b and 12s rRNA Mitochondrial Sequences

Molecular evolution of mammalian ribonucleases

And much, much more.

So, when you say, "Scientists now theorize that it evolved from a hippo-like creature, though they really have no idea", I only have one question for you: Are you outright lying, or are you just monumentally ignorant (but still arrogant enough to spout off about something you actually know so little about)?

That's not a rhetorical question. Please respond.

So unless you can elucidate some opposing scenario in which all of the above findings are *better* accounted for than in the evolutionary scenario, go run off and play with the other creationists -- the evolutionary biologists are doing adult-type stuff that you apparently can't grasp, and have no real interest in learning about.

Are there any other theories that has promoted as much searching for evidence to support it than evolution?

No need to "search" for the evidence for evolution, it arrives in a flood every time anything even remotely tangential to life is examined. For example:

The Evolution of Improved Fitness by random mutation plus selection

Ancient Jumping DNA May Have Evolved Into Key Component Of Human Immune System

Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system

Evolution of immune reactions

New insights into V(D)J recombination and its role in the evolution of the immune system

Evolution and developmental regulation of the major histocompatibility complex

Evolution of the IL-6/class IB cytokine receptor family in the immune and nervous systems

Layered evolution in the immune system. A model for the ontogeny and development of multiple lymphocyte lineages

Development of an immune system

The ancestor of the adaptive immune system was the CAM system for organogenesis

The evolutionary origins of immunoglobulins and T-cell receptors: possibilities and probabilities

Evolutionary perspectives on amyloid and inflammatory features of Alzheimer disease

Organization of the human RH50A gene (RHAG) and evolution of base composition of the RH gene family.

Molecular evolution of the vertebrate immune system.

Morphostasis: an evolving perspective.

Rapid evolution of immunoglobulin superfamily C2 domains expressed in immune system cells.

Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting proteins

Evolutionary assembly of blood coagulation proteins

Exon and domain evolution in the proenzymes of blood coagulation and fibrinolysis

Evolution of proteolytic enzymes

Evolution of vertebrate fibrin formation and the process of its dissolution.

Common Parasite Overturns Traditional Beliefs About The Evolution And Role Of Hemoglobin

Scientists Discover How Bacteria Protect Themselves Against Immune System

The Evolution of Hemoglobin

Globins in nonvertebrate species: dispersal by horizontal gene transfer and evolution of the structure-function relationships

Reduction of two functional gamma-globin genes to one: an evolutionary trend in New World monkeys

Evolutionary history of introns in a multidomain globin gene

Hemoglobin A2: origin, evolution, and aftermath

Early evolution of microtubules and undulipodia

Flagellar beat patterns and their possible evolution

A temporary flagellate (mastigote) stage in the vahlkampfiid amoeba Willaertia magna and its possible evolutionary significance

The evolutionary origin and phylogeny of eukaryote flagella

Molecular analysis of archael flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria

Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis

Dynein family of motor proteins: present status and future questions

Origins of the nucleate organisms

The evolutionary origin and phylogeny of microtubules, mitotic spindles and eukaryote flagella

The evolution of cellular movement in eukaryotes: the role of microfilaments and microtubules

Kinesin Motor Phylogenetic Tree

Evolution of a dynamic cytoskeleton

Isolation, characterization and evolution of nine pufferfish (Fugu rubripes) actin genes

Evolution of chordate actin genes: evidence from genomic organization and amino acid sequences

Structural comparisons of muscle and nonmuscle actins give insights into the evolution of their functional differences

Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged.

Co-evolution of ligand-receptor pairs in the vasopressin/oxytocin superfamily of bioactive peptides

The evolution of the synapses in the vertebrate central nervous system

Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria.

A comprehensive evolutionary analysis based on nucleotide and amino acid sequences of the alpha- and beta-subunits of glycoprotein hormone gene family.

The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution

The evolution of metabolic cycles

Evolution of the first metabolic cycles

Chemical evolution of the citric acid cycle: sunlight photolysis of the amino acids glutamate and aspartate

Speculations on the origin and evolution of metabolism

The Molecular Anatomy of an Ancient Adaptive Event

New prospects for deducing the evolutionary history of metabolic pathways in prokaryotes: aromatic biosynthesis as a case-in-point

Biochemical pathways in prokaryotes can be traced backward through evolutionary time

Enzyme specialization during the evolution of amino acid biosynthetic pathways

Enzyme recruitment in evolution of new function

Evolution of glycolysis

Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts

Theoretical approaches to the evolutionary optimization of glycolysis--chemical analysis

The evolution of kinetoplastid glycosomes

Stepwise molecular evolution of bacterial photosynthetic energy conversion

Evolution of photosynthetic reaction centers and light harvesting chlorophyll proteins

Evolution of photosynthetic reaction centers

Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins

Evolution of the control of pigment and plastid development in photosynthetic organisms

Chemical evolution of photosynthesis

Molecular evolution of ruminant lysozymes

Adaptive evolution of lysozyme: changes in amino acid sequence, regulation
of expression and gene number

Evolution of stomach lysozyme: the pig lysozyme gene

The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates

The Evolution of Color Vision

Molecular basis for tetrachromatic color vision

Molecular evolution of the Rh3 gene in Drosophila

Interphotoreceptor retinoid-binding protein. Gene characterization, protein repeat structure, and its evolution

Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal

The evolution of rhodopsins and neurotransmitter receptors

Optimization, constraint, and history in the evolution of eyes

A pessimistic estimate of the time required for an eye to evolve

Sequence analysis of teleost retina-specific lactate dehydrogenase C: evolutionary implications for the vertebrate lactate dehydrogenase gene family

The eye of the blind mole rat (Spalax ehrenbergi): regressive evolution at the molecular level

The evolution of eyes.

Programming the Drosophila embryo

Evolution of chordate hox gene clusters

Hox genes in brachiopods and priapulids and protostome evolution.

Radical evolutionary change possible in a few generations

Evolution Re-Sculpted Animal Limbs By Genetic Switches Once Thought Too Drastic For Survival

Flatworms Are Oldest Living Ancestors To Those Of Us With Right And Left Sides Researchers Report In Science

The origin and evolution of animal appendages

Hox genes in evolution: protein surfaces and paralog groups

Evolution of the insect body plan as revealed by the Sex combs reduced expression pattern

Sea urchin Hox genes: insights into the ancestral Hox cluster

Theoretical approaches to the analysis of homeobox gene evolution

Teleost HoxD and HoxA genes: comparison with tetrapods and functional evolution of the HOXD complex

Evolutionary origin of insect wings from ancestral gills

Tracing backbone evolution through a tunicate's lost tail

Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes

Modification of expression and cis-regulation of Hoxc8 in the evolution of diverged axial morphology.

The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster.

Gene duplications in evolution of archaeal family B DNA polymerases

Adaptive amino acid replacements accompanied by domain fusion in reverse transcriptase

Molecular evolution of genes encoding ribonucleases in ruminant species

Studies on the sites expressing evolutionary changes in the structure of eukaryotic 5S ribosomal RNA

Evolution of a Transfer RNA Gene Through a Point Mutation in the Anticodon

Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families

Universally conserved translation initiation factors

Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant

Evolution of transcriptional regulatory elements within the promoter of a mammalian gene.

Codon reassignment and amino acid composition in hemichordate mitochondria.

Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting proteins

Determining divergence times of the major kingdoms of living organisms with a protein clock

The multiplicity of domains in proteins

Characterization, primary structure, and evolution of lamprey plasma albumin

The origins and evolution of eukaryotic proteins

Evolution of vertebrate fibrin formation and the process of its dissolution.

Vastly Different Virus Families May Be Related

Selective sweep of a newly evolved sperm-specific gene in Drosophila

Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions

Molecular evolution of the histidine biosynthetic pathway

Accelerated evolution in inhibitor domains of porcine elafin family members

Tandem arrangement of the human serum albumin multigene family in the sub-centromeric region of 4q: evolution and chromosomal direction of transcription

The B12-dependent ribonucleotide reductase from the archaebacterium Thermoplasma acidophila: an evolutionary solution to the ribonucleotide reductase conundrum

Ancient divergence of long and short isoforms of adenylate kinase: molecular evolution of the nucleoside monophosphate kinase family

Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod

Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish

Evolution of an antifreeze glycoprotein

A model for the evolution of the plastid sec apparatus inferred from secY gene phylogeny

The evolutionary history of the amylase multigene family in Drosophila pseudoobscura

Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes

The evolution of an allosteric site in phosphorylase

Molecular evolution of fish neurohypophysial hormones: neutral and selective evolutionary mechanisms

Pseudogenes in ribonuclease evolution: a source of new biomacromolecular function?

Evolution of hemopoietic ligands and their receptors. Influence of positive selection on correlated replacements throughout ligand and receptor proteins

Evolutionary relationships of the carbamoylphosphate synthetase genes

The molecular evolution of the small heat-shock proteins in plants

Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life

Duplication and functional divergence in the chalcone synthase gene family of Asteraceae: evolution with substrate change and catalytic simplification

Evolutionary history of the 11p15 human mucin gene family.

Molecular evolution of the aldo-keto reductase gene superfamily.

Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dependent kinase.

A Classification of Possible Routes of Darwinian Evolution

Generation of evolutionary novelty by functional shift

Mobile DNA Sequences Could Be The Cause Of Chromosomal Mutations During The Evolution Of Species

A domain model for eukaryotic DNA organization: a molecular basis for cell differentiation and chromosome evolution.

The domain model for eukaryotic DNA organization. 2: A molecular basis for constraints on development and evolution.

Minor Shuffle Makes Protein Fold

Genetic Stowaways May Contribute To Evolutionary Change

Evolutionary Molecular Mechanism In Mammals Found

Complete Genomes

Genetic redundancy caused by gene duplications and its evolution in networks of transcriptional regulators

Strong evolutionary conservation of broadly expressed protein isoforms in the troponin I gene family and other vertebrate gene families

Cases of ancient mobile element DNA insertions that now affect gene regulation

Punctuated evolution caused by selection of rare beneficial mutations

The origin of programmed cell death

The origin and early development of biological catalysts

DNA secondary structures and the evolution of hypervariable tandem arrays

Episodic adaptive evolution of primate lysozymes

Genome plasticity as a paradigm of eubacteria evolution

Evolutionary motif and its biological and structural significance

Neutral and nonneutral mutations: the creative mix--evolution of complexity in gene interaction systems

Exon shuffling and other ways of module exchange

Introns and gene evolution

New Drosophila introns originate by duplication.

Evolution and the structural domains of proteins

The role of constrained self-organization in genome structural evolution

A possible origin of newly-born bacterial genes: significance of GC-rich nonstop frame on antisense strand

The coevolution of gene family trees

The evolution of metabolic cycles

The emergence of major cellular processes in evolution

A hardware interpretation of the evolution of the genetic code

Speculations on the origin and evolution of metabolism

Probabilistic reconstruction of ancestral protein sequences

The contribution of slippage-like processes to genome evolution

Molecular evolution in bacteria

The structural basis of molecular adaptation.

Mitochondrial DNA: molecular fossils in the nucleus

Cases of ancient mobile element DNA insertions that now affect gene regulation

Tiggers and DNA transposon fossils in the human genome

The eye of the blind mole rat (Spalax ehrenbergi): regressive evolution at the molecular level

Tiggers and DNA transposon fossils in the human genome

Gene competition and the possible evolutionary role of tumours

New Scientist Planet Science: Replaying life

Molecular evolution of an arsenate detoxification pathway by DNA shuffling

UB Researcher Developing Method That Employs Evolution To Develop New Drug Leads

Directed evolution of a type I antifreeze protein expressed in Escherichia coli with sodium chloride as selective pressure and its effect on antifreeze tolerance

Directed evolution of biosynthetic pathways. Recruitment of cysteine thioethers for constructing the cell wall of Escherichia coli

Exploring the functional robustness of an enzyme by in vitro evolution

Evolutionary algorithms in computer-aided molecular design

Mutations to the Rescue

Evolution of Enzymes for the Metabolism of New Chemical Inputs into the Environment

Evolution of Amino Acid Metabolism Inferred through Cladistic Analysis

Integrating the Universal Metabolism into a Phylogenetic Analysis

Invertebrate Data Predict an Early Emergence of Vertebrate Fibrillar Collagen Clades and an Anti-incest Model

Tachykinin and Tachykinin Receptor of an Ascidian, Ciona intestinalis: EVOLUTIONARY ORIGIN OF THE VERTEBRATE TACHYKININ FAMILY

DNA Replication Fidelity

Serial segmental duplications during primate evolution result in complex human genome architecture

Phylogeny determined by protein domain content

Evolutionary Genomics of Nuclear Receptors: From Twenty-Five Ancestral Genes to Derived Endocrine Systems

Gene Loss, Protein Sequence Divergence, Gene Dispensability, Expression Level, and Interactivity Are Correlated in Eukaryotic Evolution

The Evolution of Controlled Multitasked Gene Networks: The Role of Introns and Other Noncoding RNAs in the Development of Complex Organisms

Phylogenetic Dating and Characterization of Gene Duplications in Vertebrates: The Cartilaginous Fish Reference

Dating the Tree of Life

An Insect Molecular Clock Dates the Origin of the Insects and Accords with Palaeontological and Biogeographic Landmarks

Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily

Molecular archaeology of the Escherichia coli genome

Comparative Genomics of the Eukaryotes

Millions of Years of Evolution Preserved: A Comprehensive Catalog of the Processed Pseudogenes in the Human Genome

Asymmetric Sequence Divergence of Duplicate Genes

The Genetic Core of the Universal Ancestor

Evolutionary History of Chromosome 20

The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

Reconstructing large regions of an ancestral mammalian genome in silico

Occurrence and Consequences of Coding Sequence Insertions and Deletions in Mammalian Genomes

The Origin of Human Chromosome 1 and Its Homologs in Placental Mammals

Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles

Genome Evolution at the Genus Level: Comparison of Three Complete Genomes of Hyperthermophilic Archaea

The Evolution of Trichromatic Color Vision by Opsin Gene Duplication in New World and Old World Primates

Obcells as Proto-Organisms: Membrane Heredity, Lithophosphorylation, and the Origins of the Genetic Code, the First Cells, and Photosynthesis (Journal of Molecular Evolution, Volume 53 - Number 4/5, 2001)

N-Carbamoyl Amino Acid Solid-Gas Nitrosation by NO/NOx: A New Route to Oligopeptides via alpha-Amino Acid N-Carboxyanhydride. Prebiotic Implications (Journal of Molecular Evolution, Volume 48 - Number 6, 1999

Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code (Naturwissenschaften, Volume 89 Number 12 December 2002)

The Nicotinamide Biosynthetic Pathway Is a By-Product of the RNA World (Journal of Molecular Evolution, Volume 52 - Number 1, 2001)

On the RNA World: Evidence in Favor of an Early Ribonucleopeptide World

Inhibition of Ribozymes by Deoxyribonucleotides and the Origin of DNA

There's plenty more where that came from -- let me know when you're done reading those and I'll give you another ten thousand or so.

They're really stretching here.

No, you're really in denial.

When a species had to develop a defense measure to keep from being wiped out by predators this susposedly took millions of years, they must have been in hiding wating for armor, wings, poison glands or whatever to develop.

This cartoonish scenario of yours reveals a remarkable ignorance of evolutionary biology. Wherever you went to school, you should sue.

I assure you, all of our ancestors were fully human.

I assure you, you have no idea what you're talking about. Your statement clearly indicates that you haven't eve bothered to look -- there is a *massive* amount of evidence supporting common descent via evolution. In fact, there are several dozen *independent* lines of evidence that support evolution -- how do you explain your ignorance on this topic, and your willingness to make absolute claims about it without knowing the first thing about it?

For example, here's one from a previous post of mine:

Background: Retroviruses reproduce by entering a cell of a host (like, say, a human), then embedding their own viral DNA into the cell's own DNA, which has the effect of adding a "recipe" for manufacturing more viruses to the cell's "instruction book". The cell then follows those instructions because it has no reason (or way) to "mistrust" the DNA instructions it contains. So the virus has converted the cell into a virus factory, and the new viruses leave the cell, and go find more cells to infect, etc.

However, every once in a while a virus's invasion plans don't function exactly as they should, and the virus's DNA (or portions of it) gets embedded into the cell's DNA in a "broken" manner. It's stuck into there, becoming part of the cell's DNA, but it's unable to produce new viruses. So there it remains, causing no harm. If this happens in a regular body cell, it just remains there for life as a "fossil" of the past infection and goes to the grave with the individual it's stuck in. All of us almost certainly contain countless such relics of the past viral infections we've fought off.

However... By chance this sometimes happens to a special cell in the body, a gametocyte cell that's one of the ones responsible for making sperm in males and egg cells in females, and if so subsequent sperm/eggs produced by that cell will contain copies of the "fossil" virus, since now it's just a portion of the entire DNA package of the cell. And once in a blue moon such a sperm or egg is lucky enough to be one of the few which participate in fertilization and are used to produce a child -- who will now inherit copies of the "fossilized" viral DNA in every cell of his/her body, since all are copied from the DNA of the original modified sperm/egg.

So now the "fossilized" viral DNA sequence will be passed on to *their* children, and their children's children, and so on. Through a process called neutral genetic drift, given enough time (it happens faster in smaller populations than large) the "fossil" viral DNA will either be flushed out of the population eventually, *or* by luck of the draw end up in every member of the population X generations down the road. It all depends on a roll of the genetic dice.

Due to the hurdles, "fossil" retroviral DNA strings (known by the technical name of "endogenous retroviruses") don't end up ubiquitous in a species very often, but it provably *does* happen. In fact, the Human DNA project has identified literally *thousands* of such fossilized "relics" of long-ago ancestral infections in the human DNA.

And several features of these DNA relics can be used to demonstrate common descent, including their *location*. The reason is that retroviruses aren't picky about where their DNA gets inserted into the host DNA. Even in an infection in a *single* individual, each infected cell has the retroviral DNA inserted into different locations than any other cell. Because the host DNA is so enormous (billions of basepairs in humans, for example), the odds of any retroviral insertion event matching the insertion location of any other insertion event are astronomically low. The only plausible mechanism by which two individuals could have retroviral DNA inserted into exactly the same location in their respective DNAs is if they inherited copies of that DNA from the same source -- a common ancestor.

Thus, shared endogenous retroviruses between, say, ape and man is almost irrefutable evidence that they descended from a common ancestor. *Unless* you want to suggest that they were created separately, and then a virus they were both susceptible to infected both a man and an ape in EXACTLY the same location in their DNAs (the odds of such a match by luck are literally on the order of 1,000,000,000,000,000,000 to 1...), *and* that the infections both happened in their gametocyte cells (combined odds on the order of 1,000,000 to 1) *and* that the one particular affected gametocyte is the one which produces the egg or sperm which is destined to produce an offspring (*HUGE* odds against), and *then* the resulting modified genome of the offspring becomes "fixed" in each respective population (1 out of population_size^squared)...

Then repeat that for *each* shared endogenous retrovirus (there are many) you'd like to claim was acquired independently and *not* from a shared ancestor...

Finally, you'd have to explain why, for say species A, B, and C, the pattern of shared same-location retroviruses is always *nested*, never *overlapped*. For example, all three will share some retroviruses, then A and B will both share several more, but if so then B *never* shares one with C that A doesn't also have (or at least remnants of).

In your "shared infection due to genetic similarities" suggestion, even leaving aside the near statistical impossibility of the infections leaving genetic "scars" in *exactly* the same locations in independent infections, one would expect to find cases of three species X, Y, and Z, where the degree of similarity was such that Y was "between" X and Z on some similarity scale, causing the same disease to befall X and Y but not Z, and another disease to affect Y and Z but not X. And yet, we don't find this in genetic markers. The markers are found in nested sequence, which is precisely what we would expect to see in cases of inheritance from common ancestry.

Here, for example, is an ancestry tree showing the pattern of shared same-location endogenous retroviruses of type HERV-K among primates:

This is just a partial list for illustration purposes -- there are many more.

Each labeled arrow on the chart shows an ERV shared in common by all the branches to the right, and *not* the branches that are "left-and-down". This is the pattern that common descent would make. And common descent is the *only* plausible explanation for it. Furthermore, similar findings tie together larger mammal groups into successively larger "superfamilies" of creatures all descended from a common ancestor.

Any presumption of independent acquisition is literally astronomically unlikely. And "God chose to put broken relics of viral infections that never actually happened into our DNA and line them up only in patterns that would provide incredibly strong evidence of common descent which hadn't actually happened" just strains credulity (not to mention would raise troubling questions about God's motives for such a misleading act).

Once again, the evidence for common descent -- as opposed to any other conceivable alternative explanation -- is clear and overwhelming.

Wait, want more? Endogenous retroviruses are just *one* type of genetic "tag" that makes perfect sense evolutionary and *no* sense under any other scenario. In addition to ERV's, there are also similar arguments for the patterns across species of Protein functional redundancies, DNA coding redundancies, shared Processed pseudogenes, shared Transposons (including *several* independent varieties, such as SINEs and LINEs), shared redundant pseudogenes, etc. etc. Here, for example, is a small map of shared SINE events among various mammal groups:

Like ERV's, any scenario which suggests that these shared DNA features were acquired separately strains the laws of probability beyond the breaking point, but they make perfect sense from an evolutionary common-descent scenario. In the above data, it is clear that the only logical conclusion is that, for example, the cetaceans, hippos, and ruminants shared a common ancestor, in which SINE events B and C entered its DNA and then was passed on to its descendants, yet this occurred after the point in time where an earlier common ancestor had given rise both to that species, and to the lineage which later became pigs.

And this pattern (giving the *same* results) is repeated over and over and over again when various kinds of molecular evidence from DNA is examined in detail.

The molecular evidence for evolution and common descent is overwhelming. The only alternative is for creationists to deny the obvious and say, "well maybe God decided to set up all DNA in *only* ways that were consistent with an evolutionary result even though He'd have a lot more options open to him, even including parts which by every measure are useless and exactly mimic copy errors, ancient infections, stutters, and other garbage inherited from nonexistent shared ancestors"...

Or how about:
Humans have 23 pairs of chromosomes ---chimps and gorillas have 24 pairs. How many pairs of chromosomes did the "common ancestor" have? Was it 23 or 24 pairs? How do you "evolve" missing or added chromosomes ---that would happen all at one time.

The common ancestor had 24 chromosomes.

If you look at the gene sequences, you'll find that Chromosome 2 in humans is pretty much just 2 shorter chimpanzee chromosomes pasted end-to-end, with perhaps a slight bit of lost overlap:

(H=Human, C=Chimpanzee, G=Gorilla, O=Orangutan)

Somewhere along the line, after humans split off from the other great apes, or during the split itself, there was an accidental fusion of two chromosomes, end-to-end. Where there used to be 24 chromosomes, now there were 23, but containing the same total genes, so other than a "repackaging", the DNA "instructions" remained the same.

If a chimpanzee gives birth to a creature with 23 chromosomes, that offspring isn't going to be a well-formed chimpanzee able to survive well.

It is if the same genes are present, which they would be in the case of a chromosome fusion.

Evolve would imply the genetic material changes little by little --not some big loss of two chromosomes at once but I don't see how they'd go away gene by gene.

Tacking two chromosomes together end-to-end is not a "big loss" of genes, and it really is a "little by little" change in the total genetic code. It's just been "regrouped" a bit. Instead of coming in 24 "packages", it's now contained in 23, but the contents are the same.

So how, you might ask, would the chromosomes from the first 23-chromosome "fused" individual match up with the 24 chromosomes from its mate when it tried to produce offspring? Very well, thanks for asking. The "top half" of the new extra-long Chromosome 2 would adhere to the original chromosome (call it "2p") from which it was formed, and likewise for the "bottom half" which would adhere to the other original shorter chromosome (call it "2q"). In the picture above, imagine the two chimp chromosomes sliding over to "match up" against the human chromosome. The chimp chromosomes would end up butting ends with each other, or slightly overlapping in a "kink", but chromosomes have overcome worse mismatches (just consider the XY pair in every human male -- the X and the Y chromosome are *very* different in shape, length, and structure, but they still pair up).

In fact, the "rubbing ends" of the matched-up chimp chromosomes, adhering to the double-long human-type chromosome, would be more likely to become fused together themselves.

For studies in which recent chromosome fusions have been discovered and found not to cause infertility, see:

Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy. Hauffe HC, Searle JB Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom. hauffe@novanet.it

An observed chromosome fusion: Hereditas 1998;129(2):177-80 A new centric fusion translocation in cattle: rob (13;19). Molteni L, De Giovanni-Macchi A, Succi G, Cremonesi F, Stacchezzini S, Di Meo GP, Iannuzzi L Institute of Animal Husbandry, Faculty of Agricultural Science, Milan, Italy.

J Reprod Fertil 1979 Nov;57(2):363-75 Cytogenetics and reproduction of sheep with multiple centric fusions (Robertsonian translocations). Bruere AN, Ellis PM

J Reprod Fertil Suppl 1975 Oct;(23):356-70 Cytogenetic studies of three equine hybrids. Chandley AC, Short RV, Allen WR.

In that last reference, the Przewalski horse, which has 33 chromosomes, and the domestic horse, with 32 chromosomes (due to a fusion), are able to mate and produce fertile offspring.

Meanwhile, the question may be asked, how do we know that the human Chromosome 2 is actually the result of a chromsome fusion at/since a common ancestor, and not simply a matter of "different design"?

Well, if two chromsomes accidentally merged, there should be molecular remnants of the original chromosomal structures (while a chromosome designed from scratch would have no need for such leftover "train-wreck" pieces).

Ends of chromosomes have characteristic DNA base-pair sequences called "telomeres". And there are indeed remnants of telomeres at the point of presumed fusion on human Chromosome 2 (i.e., where the two ancestral ape chromosomes merged end-to-end). If I may crib from a web page:

Telomeres in humans have been shown to consist of head to tail repeats of the bases 5'TTAGGG running toward the end of the chromosome. Furthermore, there is a characteristic pattern of the base pairs in what is called the pre-telomeric region, the region just before the telomere. When the vicinity of chromosome 2 where the fusion is expected to occur (based on comparison to chimp chromosomes 2p and 2q) is examined, we see first sequences that are characteristic of the pre-telomeric region, then a section of telomeric sequences, and then another section of pre-telomeric sequences. Furthermore, in the telomeric section, it is observed that there is a point where instead of being arranged head to tail, the telomeric repeats suddenly reverse direction - becoming (CCCTAA)3' instead of 5'(TTAGGG), and the second pre-telomeric section is also the reverse of the first telomeric section. This pattern is precisely as predicted by a telomere to telomere fusion of the chimpanzee (ancestor) 2p and 2q chromosomes, and in precisely the expected location. Note that the CCCTAA sequence is the reversed complement of TTAGGG (C pairs with G, and T pairs with A).
Another piece of evidence is that if human Chromosome 2 had formed by chromosome fusion in an ancestor instead of being designed "as is", it should have evidence of 2 centromeres (the "pinched waist" in the picture above -- chromosomes have centromeres to aid in cell division). A "designed" chromosome would need only 1 centromere. An accidentally "merged" chromosome would show evidence of the 2 centromeres from the two chromosomes it merged from (one from each). And indeed, as documented in (Avarello R, Pedicini A, Caiulo A, Zuffardi O, Fraccaro M, Evidence for an ancestral alphoid domain on the long arm of human chromosome 2. Hum Genet 1992 May;89(2):247-9), the functional centromere found on human Chromosome 2 lines up with the centromere of the chimp 2p chromosome, while there are non-functional remnants of the chimp 2q centromere at the expected location on the human chromosome.

As an aside, the next time some creationist claims that there is "no evidence" for common ancestry or evolution, keep in mind that the sort of detailed "detective story" discussed above is repeated literally COUNTLESS times in the ordinary pursuit of scientific research and examination of biological and other types of evidence. Common ancestry and evolution is confirmed in bit and little ways over and over and over again. It's not just something that a couple of whacky anti-religionists dream up out of thin air and promulgate for no reason, as the creationists would have you believe.

I'm sorry, what was that you were saying about "all of our ancestors were fully human", implying that there is "no evidence" for common ancestry of humans and apes?

For all practical purposes, the debate about common descent is *OVER*. Anyone who has really been reading the flood of DNA research papers which have come out in the past five years knows for a fact (yes, I said "fact") that common descent is now beyond any dispute. There are *volumes* of information of past life history in the gigabytes of DNA sequences of modern organisms, providing multiple, independent "tracers" of their evolutionary histories beyond any reasonable doubt. And anyone who disagrees with that is either unfamiliar with the studies, and/or doesn't understand them, and/or is lying about them.

Yes, that's a very strong statement. Yes, I stand by it 100%.

If you disagree, feel free to provide alternative explanations accounting for ALL the mountains of available evidence which explains *all* of the evidence (not just some small corner of it, *ALL* of it) in a way that a) makes actual sense, and b) somehow explains why all the evidence "just happens" to point strongly towards evolutionary processes if in fact they never actually happened.

Go for it.

And yes, I've had it up to *here* with arrogant know-nothings. If you've managed to live this long without learning a damned thing about science, but are willing to smugly pontificate on it and tell us all that 140+ years of biological research is not only all wrong, but somehow an empty shell to boot, then prepare to be hit over the head with a few hundred of the literally MILLIONS of research results of which you are so monumentally ignorant. As the immortal Red Skelton said in a classic sketch, "little do you know how little you know".

Wake up and learn something about the topic for a change, or for pete's sake, at least stop spreading your ignorance -- the world has more than enough of that commodity already.

37 posted on 02/08/2005 5:11:07 AM PST by Ichneumon
[ Post Reply | Private Reply | To 5 | View Replies]

To: Ichneumon

eep!

reading that post is like witnessing a hurricane of anvils.

good post, bflr


38 posted on 02/08/2005 5:19:07 AM PST by King Prout (Remember John Adam!)
[ Post Reply | Private Reply | To 37 | View Replies]

On that pretty little artist's rendering, the horse needs to be standing next to the hippo rather than next to homo. According to the Evo-shamans, the hippo and horse are very close cousins.

Is this good for a juicy little grant for the seekers of PhD Welfare?

39 posted on 02/08/2005 5:19:27 AM PST by Mamzelle
[ Post Reply | Private Reply | To 1 | View Replies]

To: Cronos

40 posted on 02/08/2005 5:20:59 AM PST by Red Badger (ANONYMOUS IRAQI VOTER: "I dipped it deep as if I was poking the eyes of all the world's tyrants.)
[ Post Reply | Private Reply | To 15 | View Replies]

To: Ichneumon
Gee, if you say "all dispute is over"--I guess it's over! We shall now bow and scrape. Say "om". What a relief. Does this make you pope, or something?

There is no religious fanatic so obnoxious as the doctrinaire PhD crank longing for tenure and relevance.

41 posted on 02/08/2005 5:22:47 AM PST by Mamzelle
[ Post Reply | Private Reply | To 37 | View Replies]

To: patriot_wes
There you have it - if given enough time my 65 Ford Mustang could evolve to be a fruit fly.

No it couldn't, because your Mustang doesn't replicate itself, which is one of the three necessary conditions for evolutionary processes to occur. (The other two are heritable variation, and selection.)

Duh. Ridiculing a distorted cartoon-version of an opposing position is known as a "straw man fallacy", because it's equivalent to knocking around a scarecrow dressed up to look like Mike Tyson, then beating your chest about how you've defeated the champ...

That also explains why Hoyle's moronic "tornado in a junkyard" analogy (so beloved by creationists) is bogus as well. It's a completely invalid model of evolutionary processes. Hoyle was famous as an astronomer, but as a biologist he was way out of his field and pretty much a complete idiot (he also believed that insects might be as smart as humans, but just hiding it from us...)

42 posted on 02/08/2005 5:22:54 AM PST by Ichneumon
[ Post Reply | Private Reply | To 26 | View Replies]

To: AntiGuv; Strategerist
Yep. Whales evolved from primitive land whales (aka pakiceti) that looked something like this:

What proof do we have that a species can make a dramatic change into a completely different species over any period of time, no matter how long? Will you point to laboratory fruit flies in which scientist have produced changes in a multitude of characteristics? They're still just fruit flies. Let’s suppose that a supreme world leader comes to power and declares that all blond haired people must be put to death, and that any new offspring with blond hair also be killed. After several generations, humans would all be born with hair some color other than blond. Does that mean that as a species we evolved into something different? No more so than the finches on Galapagos Island evolved. The birds with the smallest beaks simply couldn’t eat the large seeds necessary for them to survive. Therefore, as a species the only survivors were the finches with large beaks.

The question is not whether natural selection occurs. Of course it does, and it has an effect in maintaining the genetic fitness of a population. Creatures with severe birth defects do not survive to maturity and creatures which do not survive to reproduce do not leave descendants. These effects are unquestioned, but you assert a great deal more than natural attrition among the genetically unfit. Your theory claims that this same force of attrition has a building effect so powerful that it can begin with a bacterial cell and gradually craft its descendants over billions of years to produce such wonders as trees, flowers, ants, birds, and humans. Bullsh*t.
43 posted on 02/08/2005 5:24:10 AM PST by Jaysun (Nefarious deeds for hire.)
[ Post Reply | Private Reply | To 36 | View Replies]

To: Ichneumon

Creationists don't deny that animals are related. What we dispute is how they got there.

Your thread falsely implies that a simple copying error accounts for the change between animals. But what your thread doesn't show is ALL of the differences in genetics between those different animals. It's a lot more than just one change.

The differences are better explained by "Common Design". Humans share 50% of their genes with Bananas. That doesn't mean that humans came from bananas or shared a common ancestor with bananas.


44 posted on 02/08/2005 5:25:35 AM PST by DannyTN
[ Post Reply | Private Reply | To 37 | View Replies]

To: Junior

I do believe that eventually my dog will evolve into road kill.


45 posted on 02/08/2005 5:26:19 AM PST by HankReardon
[ Post Reply | Private Reply | To 16 | View Replies]

To: shubi

Okay, I now believe that humans and human lice have a common ancestor. Talk about a leap of Faith!


46 posted on 02/08/2005 5:29:12 AM PST by HankReardon
[ Post Reply | Private Reply | To 23 | View Replies]

To: Mamzelle

If Pope said that, would that make a difference to you?


47 posted on 02/08/2005 5:31:19 AM PST by neutrality
[ Post Reply | Private Reply | To 41 | View Replies]

To: Mamzelle
Gee, if you say "all dispute is over"--I guess it's over! We shall now bow and scrape. Say "om". What a relief. Does this make you pope, or something?

Just stating the facts, son.

If that bothers you, then *you're* also invited to tackle the part of my post you're trying to pretend you didn't see:

If you disagree, feel free to provide alternative explanations accounting for ALL the mountains of available evidence which explains *all* of the evidence (not just some small corner of it, *ALL* of it) in a way that a) makes actual sense, and b) somehow explains why all the evidence "just happens" to point strongly towards evolutionary processes if in fact they never actually happened. Go for it.
We all await the elucidation which is sure to come from your great intellect and massive knowledge on this subject.

Really, the world of science is just dying for further helpful insights from you on these active research topics. Please review the papers in my post and get back to us with your dissertations on them. Since you take exception to my assessment, then surely something *must* be wrong with all of these findings -- please identify the errors for us. Have your mommy explain the bigger words if you need assistance.

And that goes for the rest of the anti-evolution know-it-alls on these thread as well. Come on, folks, show us what ya got. Since you're such self-proclaimed experts on evolutionary biology, this should be a piece of cake for y'all. Now's your chance, go for it. If evolution is the nonsense you claim it is, feel free to point out what's wrong with each of these papers, and what theory you've got that better explains the results and observations (*ALL* of them, not just one or two isolated observations).

Once you've finished with those, I'll post a few thousand more for you, but hey, that should be no problem for you "experts", you've got it all figured out already, right?

There is no religious fanatic so obnoxious as the doctrinaire PhD crank longing for tenure and relevance.

Are you under the mistaken impression that having nothing more substantive to add this petulant whining is going to help make you appear less of a "religious fanatic", less "obnoxious", or less of a "doctrinaire crank" than those whom you accuse who do actual research and support their positions with evidence?

Because if so, it's not working.

48 posted on 02/08/2005 5:31:59 AM PST by Ichneumon
[ Post Reply | Private Reply | To 41 | View Replies]

To: Ichneumon

WOW! That maple tree is my cousin a trillion times removed!


49 posted on 02/08/2005 5:32:29 AM PST by HankReardon
[ Post Reply | Private Reply | To 37 | View Replies]

To: HankReardon

No faith involved, just ability to analyze evidence.

When any creationist, AIG, ICR or DI actually provides some evidence for their arguments from personal incredulity, I might take the attacks on science seriously.

Until then, it just makes me sad that so many people in this country believe misinterpretations of the Bible that falsely make them think they are superior spiritually.


50 posted on 02/08/2005 5:33:23 AM PST by shubi (Peace through superior firepower.)
[ Post Reply | Private Reply | To 46 | View Replies]


Navigation: use the links below to view more comments.
first 1-5051-100101-150151-200 ... 2,201-2,242 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson