Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Why Bush's H-Car is Just Hot Air
The New Republic ^ | February 18, 2003 | Greg Easterbrook

Posted on 02/19/2003 10:23:56 AM PST by MurryMom

"A single chemical reaction between hydrogen and oxygen generates energy, which can be used to power a car producing only water, not exhaust fumes. With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen and pollution-free." President Bush said these words during his State of the Union address, introducing the FreedomFUEL proposal--which is really how the White House spells it. The president wants to spend $1.2 billion over the next five years to research the production of hydrogen as a replacement for gasoline in automobiles.

Someday men and women will probably drive cars running on "fuel-cell" motors that have no pistons, consume hydrogen, and emit no pollutants, including no greenhouse gases. Between the zero-pollutants advantages of hydrogen and the fact that its supply is in principle inexhaustible, the world's petroleum-based economy will probably eventually yield to a hydrogen-based economy--to everyone's benefit. Republicans relentlessly mocked Al Gore for saying the internal combustion engine should be replaced by something better, and now George W. Bush is saying exactly the same thing.

The attraction of hydrogen is great, since hydrogen-based transportation would both be environmentally benign and reduce the need for the United States to import petroleum. But Bush's proposal joins a new convention of rhapsodizing about hydrogen-powered transportation--Jeremy Rifkin numbers among current hydrogen zealots--while skipping over the small matter of where we get the hydrogen. Worse, the White House plan offers a long-term distraction from a short-term need: While the administration dreams big about our hydrogen-powered future, it does little to improve fuel-economy standards today.

There are many impediments to a future in which fuel-cell automobiles dominate America's roadways. What form--gaseous, liquid, or mixed with metallic dust to prevent explosion should there be an accident--would the hydrogen we pump into our cars take? How would the hydrogen be moved in commercial quantities to those filling stations? Could average motorists pump hydrogen themselves, considering it is now handled only by specialists? But these are engineering questions and presumably can be answered.

Unfortunately, a cost-effective answer to the question of how to obtain hydrogen may prove more elusive than answers to questions about how to handle it. At first glance, this issue would seem simple. After all, our world contains gargantuan amounts of hydrogen--two-thirds of the oceans, for instance, are made up of this element. But the pure form of hydrogen needed to power fuel-cell cars does not occur naturally on Earth, where hydrogen is chemically bound to other elements, such as oxygen in the case of the oceans. And, while the stars contain an almost inexpressible amount of hydrogen in its pure form, stellar material will not be on sale at your local filling station anytime soon, or ever.

Because pure hydrogen does not occur naturally on Earth, any pure hydrogen for use as fuel must be manufactured. Today, pure hydrogen is most often made using natural gas as a feedstock, but that means fossil fuels are still being consumed: Basically, the process turns a fossil fuel, methane, into something that seems not to be a fossil fuel, hydrogen. Pure hydrogen can also be manufactured using petroleum or coal, which of course are the very fossil fuels whose grip we wish to loosen. And, while pure hydrogen has been manufactured from agricultural products--plants contain hydrogen bound as carbohydrates--at the research level, it remains to be seen whether this could work commercially. Enviros rhapsodize about making hydrogen from seawater. But there's a catch: Making hydrogen from water requires loads of electricity, far more electricity than the energy value of the hydrogen that is obtained, and something--be it a coal-fired power plant or an atomic reactor--must provide the electricity. Indeed, the big misconception about hydrogen is that it is a "source" of energy. Pure hydrogen is not an energy source, except to stars. As it will be used in cars or to power homes and offices, hydrogen--like a battery--is an energy medium, a way to store power that has been obtained in some other way. Hydrogen makes an attractive energy medium because its "fuel-cycle" calculations--the sum of all steps of manufacture and use--show reductions in greenhouse gases compared with any automotive fuel burned today. But hydrogen is going to be an expensive energy medium and, in the early decades at least, will be a medium either for natural gas, a fossil fuel, or for atomic power.

Today, the most practical means to make pure hydrogen is a process called "steam reforming" of natural gas. A natural-gas molecule has one atom of carbon and four atoms of hydrogen; "reforming" strips off the carbon atoms, leaving pure hydrogen. But not only is a fossil fuel--natural gas--the raw material of this process, energy must be expended for the "reforming" itself, meaning a net loss of BTUs. Using Department of Energy estimates, the White House says pure hydrogen from natural gas is currently "four times as expensive to produce as gasoline."

Applied engineering and commercial-scale production would surely bring down the price. The most optimistic credible projection I have seen comes from Jesse Ausubel, a specialist in "industrial ecology" at the Rockefeller University, who thinks commercial-scale hydrogen made from natural gas could be produced for about 40 percent more than the price of gasoline. That's within striking distance of a good deal. But there is a catch to this catch: Optimistic estimates for hydrogen from natural gas are based on the current low selling price of natural gas. Significant new demand for natural gas might raise its price. And, while natural-gas supplies are steady at the moment, who knows what the effect on supply would be if hydrogen manufacturing caused natural-gas consumption to skyrocket?

So maybe the hydrogen should be made from coal or petroleum. Fuel-cycle calculations show that using coal or petroleum to manufacture hydrogen would lead to some reduction in greenhouse gases but not to a big cut; moreover, we'd still be digging coal and importing petroleum. Maybe hydrogen should be made from agricultural products-- "biomass," in energy lingo. But biomass feedstocks might be grown using fertilizer, which is made mainly from fossil fuels, and again the fuel-cycle calculations show only a moderate gain in pollution reduction for the large capital costs entailed in establishing an agriculture-hydrogen economy. (All hydrogen schemes, it should be noted, involve large capital costs.) Owing to these concerns, John McCarthy, a Stanford University professor emeritus of computer science, has written, "The large-scale use of hydrogen depends on using either nuclear or solar electricity." Otherwise, it's just repackaging fossil fuels.

But solar power on the scale required is far from practical. It is possible to imagine a green-dream-come-true energy cycle that uses solar collectors to generate electricity to crack hydrogen out of water: zero greenhouse gases and endlessly renewable. For the moment, solar collectors are much too expensive. The Worldwatch Institute, a much-admired, left-leaning environmental organization, recently rated sources of electricity by combining their capital cost and true social cost--that is, taking into account "externalities" such as pollution and entanglements with the Gulf states. Solar power finished last, much more expensive than coal-generated power, even when coal's external costs are factored in. An indicator: Solar-derived electricity currently wholesales for around ten times as much per kilowatt-hour as coal-fired watts.

Even if the price of solar power fell by orders of magnitude, there would be the not-so-little problem of where to put the solar collectors. To replace the petroleum we use to power our cars with hydrogen split from water might entail doubling America's electricity-generating capacity. Doing that with solar collectors could require covering a land area roughly the size of Connecticut with photovoltaic cells. In theory, the collectors could be put in space, where sunlight has eight times as many watts per square meter as on the ground and where no one's land need be taken. Figures in a recent study in Science magazine suggested that doubling the electricity-production capacity of the United States would require placing approximately 40 photovoltaic collector dishes, each the size of Manhattan, into orbit. Even if capital cost were no object and society possessed the technical means to build objects in space the size of Manhattan, such a project would take a century.

hich brings us to atomic power, the energy source everyone loves to hate. In theory, lots of new atomic stations could be built to make electricity to manufacture hydrogen, and the stations could use new, "inherently safe" reactors designed so that they cannot melt down. (In inherently safe reactors, the atomic chain reaction is initiated in such a way that, if safety systems fail, the chain breaks; researchers have deliberately turned off all cooling and safety systems of inherently safe prototypes and nothing happens.) But political opposition to atomic reactors is intense, and capital costs here would be high as well. Some estimates also suggest that, if a significant number of new reactors were put into service, uranium--currently plentiful--would become scarce after a few decades. This could be avoided by building "breeder" reactors that make more fuel than they consume. But breeders work by breeding plutonium, and most nations, including the United States, have suspended construction of breeder reactors because such machines would increase the risk of plutonium being diverted for nuclear weapons production.

Many researchers continue to believe that "fusion" reactors, which mimic the internal process of the sun, someday will be perfected. Over the long term, fusion reactors might solve all global-energy questions, oddly, by using hydrogen to make hydrogen! In a fusion reactor, tiny amounts of hydrogen isotope are fused into helium, generating heat. (The sun fuses hydrogen into helium for its luminescence, and nuclear bombs get much of their force from fusing a small amount of hydrogen isotope.) Heat from a fusion reactor would drive turbines to make electricity; the electricity would crack hydrogen out of water in large quantities; the hydrogen would power cars or be turned back into electricity in individual fuel cells in people's homes. Though a hydrogen-to-hydrogen energy cycle might sound like a perpetual-motion machine, it could end up being the technology that someday makes global-energy needs a solved issue.

But this is all blue sky because fusion reactors barely function in the laboratory--there is nothing remotely close to a commercial prototype. And, even if a grad student ran from a laboratory tomorrow yelling, "Eureka!" and clutching the secret of an unlimited-energy-fusion future, it would be another century-long project to convert the world to an energy economy based on machines that simulate the centers of stars.

Realistically, these concerns dictate that, for the next few decades, hydrogen would be manufactured either from natural gas or by using power from a new generation of atomic reactors. The most cost-effective combination, some researchers think, might be natural gas heated directly by atomic reactors, whose high operating temperatures turn out to be ideal for the reforming of hydrogen from natural gas. But that means our miracle zero-emission hydrogen will be produced from fossil fuels via an intermediate stop at a nuclear reactor--not exactly what the Sierra Club had in mind.

All these drawbacks do not rule out hydrogen as a fuel, they merely represent problems to be overcome. Hydrogen is sure to enter common use someday, perhaps during the lifetimes of children now being born. After all, a century ago, smart engineers and economists would have sworn it physically impossible--to say nothing of impossibly expensive--for the world to consume 75 million barrels of oil per day, as we do today, at affordable prices. But there is almost no chance hydrogen will make a dent in energy-use patterns during a two-term Bush administration. Even the White House concedes that the earliest a significant number of service stations could offer pure hydrogen would be 2020.

Which brings us to the downside of Bush's hydrogen proposal. The announcement makes the president sound interested in dramatic future action regarding petroleum imports and greenhouse gases, while distracting attention from the reform that is practical and affordable using technology that exists right now: higher miles-per-gallon (MPG) standards for cars, pickup trucks, and SUVs.

Bush is certainly not the first president to employ futurism to deflect attention from torpor on energy efficiency. During the eight years of the Clinton administration, federal MPG standards did not rise, while nothing was done about the fuel-efficiency exemptions enjoyed by SUVs and the misnamed "light" pickup trucks. President Clinton did, however, unveil to much fanfare a "supercar" project that promised incredible, astonishing, super-ultra-futuristic advances in mileage performance at an unspecified later date. The supercar effort, which ended up spending $1.6 billion to accomplish nothing (see "Political Mileage," by Gregg Easterbrook, October 9, 2000), was always a smoke screen. When Clinton was asked why he was taking no action on SUV mileage, he'd launch into an animated discourse about the supercar. Gore did the same, talking--like the "Futurama" caricature of himself--about 80 MPG family sedans made from recycled yogurt cartons. By resorting to discussion of speculative fantastic leaps to distract attention from bad energy policy in the present, Bush has simply taken his cue from two previous masters of petroleum-waste inaction.

And there is no escaping that energy policy remains bad in the present. True, the White House has proposed a 7 percent increase in fuel-efficiency standards for SUVs, but a loophole in the president's proposal will allow manufacturers to declare many SUVs exempt from this fairly modest new requirement. The National Research Council told the White House in summer 2001 that a 25 to 35 percent increase in SUV fuel-efficiency could be accomplished quickly using existing technology. The sorts of improvements the National Research Council envisioned would still permit the production of large vehicles and large pickups, knocking out only Godzilla-sized SUVs, such as the Ford Excursion, or those SUVs, such as the Cadillac Escalade, that get pitiful gas mileage owing to very high-horsepower engines. Yet Bush and his energy advisers apparently lack the will to face down even the relatively small Excursion and Escalade lobby. Thus, talk of the hydrogen future.

"Join me in this important innovation to make our air significantly cleaner and our country much less dependent on foreign sources of energy," Bush said in announcing the FreedomFUEL plan. Becoming "much less dependent on foreign sources of energy" should be a vital goal of U.S. policy. So why doesn't Bush take genuine action toward this end today via meaningful increases in fuel-efficiency standards, and leave futurism to the futurists?

Gregg Easterbrook is a senior editor at TNR.


TOPICS: Business/Economy; Government
KEYWORDS: bushbaloney
Navigation: use the links below to view more comments.
first previous 1-20 ... 41-6061-8081-100101 next last
To: Boss_Jim_Gettys
H2 stored in a metal hydride can be instantly converted back into gaseous h2, just add water. http://www.powerball.net/ has some info if you are interested.
61 posted on 02/19/2003 2:49:55 PM PST by Britton J Wingfield
[ Post Reply | Private Reply | To 26 | View Replies]

To: Britton J Wingfield
I believe using a metal hydride "gas tank" would be pretty heavy and I don't know how many miles worth of fuel you could carry. I'll take a look at the link you provided.

Also, that would still require someone to fill the car with gaseous hydrogen and also the infrastructure to deliver across the entire country/world. There is already the infrastructure to deliver gasoline and/or methanol.

62 posted on 02/19/2003 3:53:48 PM PST by Boss_Jim_Gettys
[ Post Reply | Private Reply | To 61 | View Replies]

To: Boss_Jim_Gettys
The tank is just a tank, of normal metal of composite. The hydride is in the form of small metal balls, coated with plastic. They test the integrity of the balls by boiling them in water, so they are quite safe to transport. You drop the ball into the tank of water, then puncture the plastic coating to allow it to react with water.
63 posted on 02/19/2003 3:58:38 PM PST by Britton J Wingfield
[ Post Reply | Private Reply | To 62 | View Replies]

To: from occupied ga
True The correct answer is False. Go back to school. Take physical chemistry and pay particular attention to the first and second laws of thermodynamics.

I did go back to school...about nine years ago. My major was evolutionary genetics. What's yours?
64 posted on 02/19/2003 4:02:39 PM PST by radioman
[ Post Reply | Private Reply | To 21 | View Replies]

To: Britton J Wingfield
I took a quick look at the site. The technology looks interesting but I am certain it would be uneconomical for transportaion fuel purposes.
65 posted on 02/19/2003 6:17:49 PM PST by Boss_Jim_Gettys
[ Post Reply | Private Reply | To 63 | View Replies]

To: radioman
biophysics PhD
66 posted on 02/20/2003 3:24:05 AM PST by from occupied ga (Your government is your enemy, and Bush is no conservative)
[ Post Reply | Private Reply | To 64 | View Replies]

To: Ditto
No doubt. But that is another issue. We were discussing the merts/economics of H2 as a transport fuel

That (corporate welfare) is the only "merit." Conversion of fossil fuel to H2 costs energy. Conversion yields pollutants. Net result you have tripled or quadrupled your fossil fuel requirements to shift pollution from many small sources to fewer big ones. You have also added an enormous capital intensive infrastructure to provide H2. No way this is better than direct burning of fossil fuels.

67 posted on 02/20/2003 5:05:25 AM PST by from occupied ga (Your government is your enemy, and Bush is no conservative)
[ Post Reply | Private Reply | To 59 | View Replies]

To: from occupied ga
Conversion of fossil fuel to H2 costs energy.

Why use fossil? I would oppose that. Nuclear is the best option even if pollitically incorrect. But the 'soft alternatives' such as wind, solar, tidal etc. which due to their unreliability and geographic limitations are useless baggage for the power grid could be very viable in an H2 production mode.

68 posted on 02/20/2003 7:21:59 AM PST by Ditto (You are free to form your own opinions, but not your own facts.)
[ Post Reply | Private Reply | To 67 | View Replies]

To: Ditto
Nuclear is the best option even if pollitically incorrect

Yes, best of a bad lot, but still not good. Nuclear is relatively cheap when compared to CT and coal, not free. Is spending the huge amounts of energy required for electrolysis of water to produce h2 in the necessary quantity a good use for the resources? Remember, there isn't any reserve nuclear capacity now. The country's nuclear generating stations mostly run at capacity now because they are the cheapest units except for hydro. So either another 200 - 300 nuclear generating stations have to be built along with the industrial structure to produce and distribue H2 on a commercial scale (Couple of trillion $$$?), or you have to get the electricity for peaking units which burn fossil fuels already and make the conversion much more inefficient than the "reforming" from methane.

H2 as a practical vehicle fuel is a pipe dream for some politicians and Sierra club types who confuse science with science fiction. The politicians at least understand that H2 can cynically be used to transfer wealth from the already overexploited taxpayers to their buddies in the corporate world.

BTW you didn't answer whose money you wanted to spend to play with this concept.

69 posted on 02/20/2003 7:43:07 AM PST by from occupied ga (Your government is your enemy, and Bush is no conservative)
[ Post Reply | Private Reply | To 68 | View Replies]

To: from occupied ga
Yes, best of a bad lot, but still not good. Nuclear is relatively cheap when compared to CT and coal, not free. Is spending the huge amounts of energy required for electrolysis of water to produce h2 in the necessary quantity a good use for the resources?

You don't know that unless you know the costs of the alternatives to H2.

Fuel cell technology is no longer the question. They work and are clean, efficient, and reliable. The question is the fuel cycle with H2 being the best possible fuel. It's worth investigating. When you say "look at the money" as opposed to "look at the potential" you are self-limiting. Consider that in a few decades after the invention of the internal combustion engine, virtually every corner of the globe had developed the "hydrocarbon infrastructure" to support wide-spread use. That was an achievement that boggles the mind of a 'central planner' but it was accomplished with relatively little fuss. If the economics work, the infrastructure will follow.

70 posted on 02/20/2003 8:18:08 AM PST by Ditto (You are free to form your own opinions, but not your own facts.)
[ Post Reply | Private Reply | To 69 | View Replies]

To: eastsider
Process turns wastewater into fuel gases

Microbial bioreactors producing H2 for conventional fuel cells.

71 posted on 02/20/2003 8:26:55 AM PST by Cooter
[ Post Reply | Private Reply | To 44 | View Replies]

To: Ditto
You don't know that unless you know the costs of the alternatives to H2

Not true. We do know what approximately what it would cost.

  1. It would cost enough new nuclear plants at several billion dollars each and a construction time of 10 - 15 years to supply the energy demand required by the H2 itself plus the 2nd law inefficiencies in the process.
  2. It would cost the industrial structure to produce the H2.
  3. It would cost the distribution structure to get the H2 from the manufacturing points to the neighborhood Hydrogen stations
  4. It would cost the resources to build Hydrogen stations instead of Gas stations (cryostorage is pretty expensive)
  5. It would cost the R&D to develop safe vehicles to use H2 as a fuel
  6. It would cost the retooling by the auto manufacturers to make the H2 cars
When you add it up the resources needed for this are staggering. And remember every penny spent on this is money that won't be spent on something else - perhaps fusion research which would truly be a new energy source rather than a chemical reshuffling of existing energy sources.

That was an achievement that boggles the mind of a 'central planner' but it was accomplished with relatively little fuss. If the economics work, the infrastructure will follow.

I find it odd that you say this. I agree with it wholeheartedly, but it contradicts your position that H2 could be a practical fuel and it's worth spending a few billion dollars of other peoples' money to pursue it. If it were economically advantageous it would have been done already. After all the concept isn't new. However, the free market is rejecting it. You won't find any successful corporations based on H2 vehicle production for the public.

72 posted on 02/20/2003 8:36:46 AM PST by from occupied ga (Your government is your enemy, and Bush is no conservative)
[ Post Reply | Private Reply | To 70 | View Replies]

To: Ditto
Oh and BTW I disagree with your statement about fuel cells. They are NOT reliable nor do they have a particularly long service life. This short service life (as compared to an internal combustion engine) makes them rather expensive.
73 posted on 02/20/2003 8:41:04 AM PST by from occupied ga (Your government is your enemy, and Bush is no conservative)
[ Post Reply | Private Reply | To 70 | View Replies]

To: Cooter
Thanks for the links, Cooter.
74 posted on 02/20/2003 9:55:40 AM PST by eastsider
[ Post Reply | Private Reply | To 71 | View Replies]

To: from occupied ga
biophysics PhD

Interesting...My suspicions about the cult of higher education have been confirmed.

LOL! I wouldn't know an evolute from a genetic if it jumped up and bit me on the arse!

My comment was shamelessly plagiarised from a well known physisist's reply to a reporter. Sorry, just my lame attempt at humor, nothing personal.

It puzzles me when people attack someone who questions dogma like a religious zealot attacks a blasphemer.

Science, like mechanics, should be fun. I believe in can do the same way you believe in impossible.

Acadamia proved that a controlled nuclear reaction was impossible to achieve. A couple of guys in Chicago showed that all you have to do is stack some bricks of uranium close together. Their violation of the law of thermodynamics gave us nuclear power!
75 posted on 02/20/2003 10:30:49 AM PST by radioman
[ Post Reply | Private Reply | To 66 | View Replies]

To: radioman
My suspicions about the cult of higher education have been confirmed.

My suspicions about the cult of ignorance have been confirmed.

. I believe in can do the same way you believe in impossible.

Your ignorance of the laws of thermodynamics notwithstanding, they exist and all physical processes are subject to them. This isn't a matter of opinion. It isn't subject to polls. You can't take a vote and decide to suspend reality for H2 (or for ethanol.) There aren't any exceptions. The fact remains that taking H2 containing fossil fuel and extracting the H2 costs a significant fraction of the available energy in the fossil fuel to start with.

However, don't let me rain on your parade. You can take every cent you have (after the government finishes plundering you of course) and invest it in schemes to make H2 as a motor fuel. If you're right, you'll be richer than Bill Gates. Go for it. I wish you luck.

76 posted on 02/20/2003 11:09:49 AM PST by from occupied ga (Your government is your enemy, and Bush is no conservative)
[ Post Reply | Private Reply | To 75 | View Replies]

To: from occupied ga
However, don't let me rain on your parade. You can take every cent you have (after the government finishes plundering you of course) and invest it in schemes to make H2 as a motor fuel. If you're right, you'll be richer than Bill Gates. Go for it. I wish you luck.

Thanks Doc, but I wouldn't invest a penny in H2 or any other motor fuel. Don't need to be richer than Bill Gates, although it is interesting that you used a college drop out like Bill for your example.

Before I retired, I made a good living building working models for inventors and engineers. I have built many prototypes of inventions that are now being used by people just like you.
I don't mind at all being called ignorant by an academic like yourself. You attack my intelligence because I disagree with your dogma, yet you have no response on the violation of the law of thermal dynamics when it comes to nuclear energy.

You can say that there is no violation and go into a long discourse on nuclear theory, but that's what you guys always do.

Acadamia is very good at explaining a breakthrough after the fact, but has failed miserably at inventing.

Take your own field of biology. Cancer still kills millions. Diabetics are still having their limbs amputated. We've poured money by the ton into acadamia to solve these problems, but have gained absolutely nothing in return.

I realize that you are just defending the paycheck you recieve for perpetual study, but it irks me the way you guys try to belittle the people who have created the prosperity that you enjoy.
77 posted on 02/20/2003 12:16:21 PM PST by radioman
[ Post Reply | Private Reply | To 76 | View Replies]

To: MurryMom
Heh, heh, heh... I almost feel sorry for you Mom. Folks like you must really have their knickers in a twist after W harpooned yet another of your "issues". Not bad for someone y'all claim has the IQ of a brick.
78 posted on 02/20/2003 12:21:13 PM PST by Redcloak (What?! Was it something I said?)
[ Post Reply | Private Reply | To 1 | View Replies]

To: radioman
I realize that you are just defending the paycheck you recieve for perpetual study,

Well I said that I didn't want to rain on your parade, but I think I might here by disrupting your preconceptions. I don't receive a paycheck. I get paid by the contract and only if I produce what the client wants. I run a business that doesn't have anything to do with academic research. I don't take a penny of taxpayer money, although I was guilty of that crime long in the past.

You attack my intelligence because I disagree with your dogma

Calling you ignorant is not attacking your intelligence, just your (lack of) knowledge.

but have gained absolutely nothing in return.

And yes cancer still is the # 1 killer of people under 65, but your chances of surviving a heart attack today are probably 50 times greater than they were 30 years ago, with most of the research on this being paid for by drug companies and the medical industry.

you have no response on the violation of the law of thermal dynamics when it comes to nuclear energy.

Nuclear physics doesn't violate the laws of thermodynamics. It's just the reactions are done on a bigger scale.

to belittle the people who have created the prosperity that you enjoy.

I was not belittling you - I was simply pointing out that H2 as a motor fuel is pure bs on the same level as ethanol as a motor fuel. Sorry if you don't want to accept it, but that's your problem.

And how the hell did you create my prosperity? I don't see you around when I get to work at 5:30 in the morning. I don't see you around at 6:00pm when I go home. I don't recall you or anyone else on this forum ever solving a problem that I had with a client's request. I'm sure I would remember if you or anyone else had helped me set up my company. And I don't recall you or anyone else grabbing their checkbook when it comes time for me to pay my bills.

What I do remember vividly is every year filling out a 1120 forms, 1040 forms, etc. and forking large quantities fo the wealth that I busted my a$$ to earn over to the government to squander on bull sh!t like H2 and the space shuttle (flying kid's ant colonies into space at the taxpayers expense). All of which is enabled by people like you who thinkt that "hydrogen production is simple and efficient" Well simple it is, but it is a long long long way from efficient, and those two laws of thermodynamics that you wear your ignorance of like a shield tell me that there is never going to be any way to make it efficient.

Live long and prosper.

79 posted on 02/20/2003 12:47:36 PM PST by from occupied ga (Your government is your enemy, and Bush is no conservative)
[ Post Reply | Private Reply | To 77 | View Replies]

To: Chemist_Geek
Hydrogen cannot be a primary source of energy on this planet. But that isn't the point. We can create enough hydrogen to power our cars and control whatever the primary source is at the same time. It's a good thing, not a less-expensive or more efficient thing. It will cost more. We hardly ever look for the most cost-effective way to do anything, do we. Better doesn't not equal cheaper.
80 posted on 02/20/2003 12:53:57 PM PST by RightWhale
[ Post Reply | Private Reply | To 6 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-20 ... 41-6061-8081-100101 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson