Free Republic
Browse · Search
Topics · Post Article

Skip to comments.

NASA’s plasma rocket making progress toward a 100-hour firing
Ars Technica ^ | 10 Aug, 2017 | ERIC BERGER

Posted on 08/11/2017 8:18:43 AM PDT by MtnClimber

Almost everyone recognizes that if humans are truly to go deeper into the Solar System, we need faster and more efficient propulsion systems than conventional chemical rockets. Rocket engines powered by chemical propellants are great for breaking the chains of Earth's gravity, but they consume way too much fuel when used in space and don't offer optimal control of a spacecraft's thrust.

NASA recognizes this, too. So in 2015, the space agency awarded three different contracts for development of advanced propulsion systems. Of these, perhaps the most intriguing is a plasma-based rocket—which runs on Argon fuel, generates a plasma, excites it, and then pushes it out a nozzle at high speed. This solution has the potential to shorten the travel time between Earth and Mars to weeks, rather than months.

But to realize that potential, Houston-based Ad Astra Rocket Company must first demonstrate that its plasma rocket, VASIMR, can fire continuously for a long period of time. The three-year, $9 million contract from NASA required the company to fire its plasma rocket for 100 hours at a power level of 100 kilowatts by 2018.

This week, Ad Astra reported that it remains on target toward that goal. The company completed a successful performance review with NASA after its second year of the contract, and it has now fired the engine for a total of 10 hours while making significant modifications to its large vacuum chamber to handle the thermal load produced by the rocket engine.

(Excerpt) Read more at ...

TOPICS: Science
KEYWORDS: rocket

1 posted on 08/11/2017 8:18:43 AM PDT by MtnClimber
[ Post Reply | Private Reply | View Replies]

To: MtnClimber

An interesting project.

2 posted on 08/11/2017 8:19:14 AM PDT by MtnClimber (For photos of Colorado scenery and wildlife, click on my screen name for my FR home page.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: MtnClimber
I've always been a fan of VASIMR and "Ad Astra."

One of the best practical approaches i've seen so far.

3 posted on 08/11/2017 8:25:19 AM PDT by DiogenesLamp ("of parents owing allegiance to no other sovereignty.")
[ Post Reply | Private Reply | To 1 | View Replies]

To: MtnClimber
Argon is not the fuel, it's the propellant, the reaction mass.
I hope they can make it work though, it has been long known that chemical rocket fuel does not have enough energy density for serious space travel.

4 posted on 08/11/2017 8:27:13 AM PDT by BitWielder1 (I'd rather have Unequal Wealth than Equal Poverty.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: DiogenesLamp

...I’ve always been a fan of VASIMR and “Ad Astra.” ...
I like “Ad Astra” too, but he sucked as Mary Tyler Moore’s boss.

5 posted on 08/11/2017 8:48:46 AM PDT by burndoubt (I'm the most pleasant mother pheasant plucker that ever plucked a mother pheasant)
[ Post Reply | Private Reply | To 3 | View Replies]

To: MtnClimber

Everyone knows that it will require nuclear powered jets.

6 posted on 08/11/2017 8:55:53 AM PDT by nikos1121 (Rudy Guiuliani for Head of FBI)
[ Post Reply | Private Reply | To 2 | View Replies]

To: MtnClimber

I am confused about the concern for the use of nuclear power for space vehicles. For me, it would seem that, in many ways, nuclear power would be more manageable in space than on earth as the power plant can be isolated from human contact. There is so much radiation in space already that the vehicles should be protected. Cooling would seem simpler in space.

It just seems like nuclear power in space opens up a lot of possibilities. I’m ignorant of the additional risks compared to conventional rockets and fuel storage.

Maybe a smart person can explain to me. (I understand how a nuclear reactor works to generate electricity.)

7 posted on 08/11/2017 8:58:26 AM PDT by Tenacious 1 (You couldn't pay me enough to be famous for being stupid!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Tenacious 1

I believe the concern is that a failure during launch (think Challenger) might rain down radioactive contamination and debris.

8 posted on 08/11/2017 9:07:22 AM PDT by GuySwell
[ Post Reply | Private Reply | To 7 | View Replies]

To: Tenacious 1

Here’s an interesting article about the use of nuclear-powered satellites. Note the mention...”The Soviet Union had a few such mishaps since it launched all those nuclear satellites. In 1978, its spy satellite, Kosmos 954, crashed into the Northwest Territories, scattering radioactivity across almost 48,000 square miles. The USSR had to pay Canada $10 million for the damage.”

9 posted on 08/11/2017 9:14:06 AM PDT by GuySwell
[ Post Reply | Private Reply | To 7 | View Replies]

To: GuySwell

10 posted on 08/11/2017 9:16:35 AM PDT by GuySwell
[ Post Reply | Private Reply | To 9 | View Replies]

To: MtnClimber
I'm all for study and development of faster space travel engines but...two words:

Acceleration. Deceleration.
Neither of which can the human body handle well at high velocities. So calculating how fast a ship can go against the distance to travel does not yield a usable number as to how long a trip will take.

At super fast speeds, a ship will have to accelerate slowly and will need to decelerate just as slowly at roughly the halfway point. No sense having astronauts pinned up against or splattered all over the bulkeads.

11 posted on 08/11/2017 10:05:23 AM PDT by Bloody Sam Roberts ("Good judgment comes from experience, and a lot of that comes from bad judgment." - Will Rogers)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Bloody Sam Roberts

Chunky salsa.

12 posted on 08/11/2017 10:06:24 AM PDT by bar sin·is·ter (Climate Scientology - another example of science fiction morphing into a religious cult)
[ Post Reply | Private Reply | To 11 | View Replies]

To: Tenacious 1

Nothing else comes near the power density of nuclear in space applications. When you SWAP analysis (Space, Weight And Power trade offs) nuclear is head and shoulders above anything else.

Currently, space systems use very low power nuclear sources called “batteries” rather than “reactors” (10’s or 100’s of kilowatts, or even less).

We can however, get ten Megawatts of electricity for ten years (conservatively) out of a power plant the size of two five gallon paint buckets. It would very likely require less cooling than whatever systems it supplies, require no more shielding than space itself, and be an ultra-high reliability system.

Currently, that is only useful for running onboard systems, while propulsion remains the overwhelming energy requirement - to escape the gravity of Earth, or land some where else (requiring tons of chemical fuel).

A few things could change in the coming decades though:

More and bigger facilities could persist longer in space (e.g. more space stations), and they might take on more energy intensive missions (like supporting more life, manufacturing, or processing basic materials and fuel)- which would change the balance of energy requirements more toward long term onboard electricity, and less toward initial liftoff.

ElectroMagnetic (EM) drives could be developed for space propulsion. So far, no showstoppers have cropped up that rule out using just electric energy for propulsion. Although it is very low thrust bench top demonstrators right now, it seems promising that it could be able to scale up to propel spacecraft quickly and efficiently around space (but not liftoff or landing). A little acceleration continuously applied for a few weeks gets a spacecraft up to high speed, then you turn it around and gradually slow down as you approach your destination. EM drives, if they work as theorized, could also enable travel to Mars in a matter of weeks, instead of the current two year journey, without being dependent on infrequent launch windows.

Also, we could move further out, where solar panels become ineffective options for electricity. Beyond the Asteroid belt between Mars and Jupiter, the Sun begins to dim below the useful energy density for solar panels. Also, just like here, we will want constant energy at night, on the dark side of the moon, and in underground facilities or mines. Nuclear power sources won’t be as vulnerably to clouds, dust or storms as solar panels would be on another planet with atmosphere, or to solar flares/EM storms in space.

When we get serious about inhabiting and doing business in space, we need to get serious about nuclear power to support it.

13 posted on 08/11/2017 10:06:57 AM PDT by BeauBo
[ Post Reply | Private Reply | To 7 | View Replies]

To: GuySwell

Also one of the concerns when looking for ways to dispose of nuclear fuel waste products.

14 posted on 08/11/2017 10:07:39 AM PDT by Bloody Sam Roberts ("Good judgment comes from experience, and a lot of that comes from bad judgment." - Will Rogers)
[ Post Reply | Private Reply | To 8 | View Replies]

To: MtnClimber

I would make a chemistry joke here,
but all the goods ones Argon.

15 posted on 08/11/2017 11:23:39 AM PDT by DannyTN
[ Post Reply | Private Reply | To 1 | View Replies]

To: BitWielder1
Reaction mass? We don't need no stinkin' reaction mass!
16 posted on 08/11/2017 11:30:39 AM PDT by Garth Tater (What's mine is mine.)
[ Post Reply | Private Reply | To 4 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794 is powered by software copyright 2000-2008 John Robinson