Free Republic 2nd Qtr 2024 Fundraising Target: $81,000 Receipts & Pledges to-date: $11,183
13%  
Woo hoo!! And we're now over 13%!! Thank you all very much!! God bless.

Keyword: jahntellermetal

Brevity: Headers | « Text »
  • Scientists have discovered a new state of matter, called 'Jahn-Teller metals'

    07/25/2015 6:00:39 PM PDT · by 2ndDivisionVet · 26 replies
    Science Alert ^ | May 12, 2015 | Bec Crew
    And it could be the key to understanding one of the biggest mysteries in physics today - high-temperature superconductors.An international team of scientists has announced the discovery of a new state of matter in a material that appears to be an insulator, superconductor, metal and magnet all rolled into one, saying that it could lead to the development of more effective high-temperature superconductors. Why is this so exciting? Well, if these properties are confirmed, this new state of matter will allow scientists to better understand why some materials have the potential to achieve superconductivity at a relativity high critical temperature...
  • High-temperature superconductor spills secret: A new phase of matter

    03/25/2011 3:27:53 PM PDT · by decimon · 23 replies
    PhysOrg ^ | March 24, 2011 | Unknown
    (PhysOrg.com) -- Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley have joined with researchers at Stanford University and the SLAC National Accelerator Laboratory to mount a three-pronged attack on one of the most obstinate puzzles in materials sciences: what is the pseudogap?A collaboration organized by Zhi-Xun Shen, a member of the Stanford Institute for Materials and Energy Science (SIMES) at SLAC and a professor of physics at Stanford University, used three complementary experimental approaches to investigate a single material, the high-temperature superconductor Pb-Bi2201 (lead bismuth strontium lanthanum copper-oxide)....
  • One-atom-thick materials promise a 'new industrial revolution'

    07/24/2005 10:53:00 PM PDT · by LibWhacker · 20 replies · 1,584+ views
    Scientists at The University of Manchester have discovered a new class of materials which have previously only existed in science fiction films and books. A team of British and Russian scientists led by Professor Geim have discovered a whole family of previously unknown materials, which are one atom thick and exhibit properties which scientists had never thought possible. Not only are they ultra-thin, but depending on circumstances they can also be ultra-strong, highly-insulating or highly-conductive, offering a wide range of unique properties for space-age engineers and designers to choose from. Professor Andre Geim said: "This discovery opens up practically infinite...
  • This Strange Metal Might Be the Newest State of Matter

    05/14/2015 10:48:49 AM PDT · by ShadowAce · 38 replies
    Popular Mechanics ^ | 12 may 2015 | John Wenz
    Researchers at Japan's Tohoku University are making a bold claim: an entirely new state of matter. The team, led by Kosmas Prassides, says they've created what's called a Jahn-Teller metal by inserting rubidium, a strange alkali metal element, into buckyballs, a pure carbon structure which has a spherical shape from a series of interlocking polygons (think of the Epcot Center, but in microscopic size.) Advertisement - Continue Reading Below Buckyballs, which are somewhat related to other supermaterials like graphene and carbon nanotubes, are already known for their superconductive capabilities. Here, while combining buckyballs and rubidium, the researchers created a...
  • Ultrathin Copper-Oxide Layers Behave Like Quantum Spin Liquid

    06/10/2011 8:04:58 AM PDT · by decimon · 14 replies
    Brookhaven National Laboratory ^ | June 10, 2011 | Unknown
    Surprising discovery may offer clues to emergence of high-temperature superconductivityUPTON, NY — Magnetic studies of ultrathin slabs of copper-oxide materials reveal that at very low temperatures, the thinnest, isolated layers lose their long-range magnetic order and instead behave like a “quantum spin liquid” — a state of matter where the orientations of electron spins fluctuate wildly. This unexpected discovery by scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and collaborators at the Paul Scherrer Institute in Switzerland may offer support for the idea that this novel condensed state of matter is a precursor to the emergence of...
  • The 2011 Cold Fusion/Lattice-Assisted Nuclear Reactions Colloquium at MIT — Part 2

    09/27/2011 11:42:18 PM PDT · by Kevmo · 11 replies
    INFINITE ENERGY • ISSUE 99 • SEPTEMBER/OCTOBER 2011 ^ | ISSUE 99 • SEPTEMBER/OCTOBER 2011 | INFINITE ENERGY •/ Jet Energy Staff
    The 2011 Cold Fusion/Lattice-Assisted Nuclear Reactions Colloquium at the Massachusetts Institute of Technology — Part 2 (Report prepared by staff of JET Energy, Inc.) INFINITE ENERGY • ISSUE 99 • SEPTEMBER/OCTOBER 2011 The 2011 Lattice-Assisted Nuclear Reactions/Cold Fusion Colloquium at the Massachusetts Institute of Technology (Cambridge, Massachusetts) was held on Saturday, June 11 and Sunday, June 12, 2011. The meeting focused on the science and technology of cold fusion (CF) and lattice-assisted nuclear reactions (LANR). In 1989, the initial failures of cold fusion resulted from bad experiments, bad paradigm, materials issues, poor loadings and a poor appreciation of the...
  • MIT and Cold Fusion: A Special Report

    09/10/2011 8:55:10 AM PDT · by Kevmo · 25 replies
    Infinite Energy Magazine, Issue 24 ^ | 2003 | Eugene F. Mallove, Sc.D.
    MIT and Cold Fusion: A Special Report Compiled and written by Eugene F. Mallove, Sc.D. MIT Class of 1969, S.B. Aero/Astro Eng., 1970 S.M. Aero/Astro Eng. Editor-in-Chief, Infinite Energy Magazine President, New Energy Foundation, Inc. Introduction When on March 23, 1989 Drs. Martin Fleischmann and Stanley Pons announced that they had measured nuclear-scale excess energy from a palladium-heavy water electrochemical cell, and that they had also detected some preliminary evidence of nuclear signatures from their exotic energy-producing reactions, the world was in awe. Their famous afternoon press conference at the University of Utah, coming less than twelve hours before the...