Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

MIT, Brigham: Nanoparticles Armed to Combat Cancer
Bio.com ^ | 4/10/06

Posted on 04/11/2006 2:37:10 AM PDT by LibWhacker

Ultra-small particles loaded with medicine - and aimed with the precision of a rifle - are offering a promising new way to strike at cancer, according to researchers working at MIT and Brigham and Women's Hospital.

In a paper to appear the week of April 10 in the online edition of the Proceedings of the National Academy of Sciences, the team reports a way to custom design nanoparticles so they home in on dangerous cancer cells, then enter the cells to deliver lethal doses of chemotherapy. Normal, healthy cells remain unscathed.

print this page email this page The team conducted experiments first on cells growing in laboratory dishes, and then on mice bearing human prostate tumors. The tumors shrank dramatically, and all of the treated mice survived the study; the untreated control animals did not.

"A single injection of our nanoparticles completely eradicated the tumors in five of the seven treated animals, and the remaining animals also had significant tumor reduction, compared to the controls," said Dr. Omid C. Farokhzad, an assistant professor at Brigham and Women's Hospital and Harvard Medical School.

Farokhzad and MIT Institute Professor Robert Langer led the team of eight researchers. (Farokhzad was formerly a research fellow in Langer's lab.)

The scientists said that further testing is needed. Although all the parts and pieces of their new system are known to be safe, the system itself must yet be proven safe and effective in humans. This means thorough testing must be done in larger animals, and eventually in humans.

"We're most interested in developing a system that ends up in the clinic helping patients," Farokhzad said. To make that happen, he added, "we brought in cancer specialists and urologists to collaborate with us."

Further, he said, from an engineering perspective "we wanted to develop a broadly applicable system, one that other investigators can alter for their own purposes."

For example, Langer said, researchers "can put different things inside, or other things on the outside, of the nanoparticles. In fact, this technology could be applied to almost any disease" by re-engineering the nanoparticles' properties. The nanoparticles work like a bus that can safely carry different passengers to different destinations.

In the study, Farokhzad, Langer and colleagues tailor-made tiny sponge-like nanoparticles laced with the drug docetaxel. The particles are specifically designed to dissolve in a cell's internal fluids, releasing the anti-cancer drug either rapidly or slowly, depending on what is needed. These nanoparticles were purposely made from materials that are familiar and approved for medical applications by the U.S. Food and Drug Administration. Thus all of the ingredients are known to be safe.

Also, to make sure only the correct cells are hit, the nanoparticles are "decorated" on the outside with targeting molecules called aptamers, tiny chunks of genetic material. Like homing devices, the aptamers specifically recognize the surface molecules on cancer cells, while avoiding normal cells. In other words, the bus is driven to the correct depot.

In addition, the nanoparticles also display polyethylene glycol molecules, which keep them from being rapidly destroyed by macrophages, cells that guard against foreign substances entering the body.

The team chose nanoparticles as drug-delivery vehicles because they are so small that living cells readily swallow them when they arrive at the cell's surface. Langer said that particles larger than 200 nanometers are less likely to get through a cell's membrane. A nanometer is one-billionth of a meter.

The Farokhzad-Langer team created particles that are about 150 nanometers in size: a thousand sitting side by side might equal the width of a human hair.


TOPICS: News/Current Events
KEYWORDS: aptamers; armed; cancer; combat; nanoparticles; nanotechnology

1 posted on 04/11/2006 2:37:11 AM PDT by LibWhacker
[ Post Reply | Private Reply | View Replies]

To: LibWhacker

Geez, just think of the harm those things could do.

There could be some real cloak-and-dagger applications.


2 posted on 04/11/2006 2:50:05 AM PDT by martin_fierro (< |:)~)
[ Post Reply | Private Reply | To 1 | View Replies]

To: martin_fierro

Hadn't thought of that. Will be dangerous, and perhaps also very beneficial -- for the most advanced countries in the world. In the distant future they might engineer trillions of the things designed to look for one person (some future bin Laden), passing from person to person, checking genes, until they find him, and then . . . beddy-bye, binny!


3 posted on 04/11/2006 2:59:40 AM PDT by LibWhacker
[ Post Reply | Private Reply | To 2 | View Replies]

To: LibWhacker

"Ultra-small particles loaded with medicine - and aimed with the precision of a rifle - "


Correct me if I'm wrong, but doesn't the person aiming the rifle make it precise or not? I mean, it's like the rifle is going to aim itself (unless maybe it's SeaWhiz, or something).. Statements like that just bug me, for some reason.


4 posted on 04/11/2006 5:29:41 AM PDT by Ro_Thunder ("Other than ending SLAVERY, FASCISM, NAZISM and COMMUNISM, war has never solved anything")
[ Post Reply | Private Reply | To 1 | View Replies]

To: Fasciitis

molecular genetics ping!!!


5 posted on 04/12/2006 9:48:07 AM PDT by adam_az (It's the border, stupid!)
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson