Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

New Battery Could Be Just What the Grid Ordered
MIT Technology Review ^ | Wednesday, September 28, 2011 | By Prachi Patel

Posted on 09/28/2011 10:27:12 AM PDT by Red Badger

A Pittsburgh company says its battery has the long life and cheap cost needed to be practical for energy storage.

Utilities need cheap, long-lasting ways to store the excess energy produced by power plants, especially as intermittent power from solar and wind farms is added to the mix. Unfortunately, the batteries available for grid-level storage are either too expensive or don't last for the thousands of cycles needed to make them cost-effective.

A new battery developed by Aquion Energy in Pittsburgh uses simple chemistry—a water-based electrolyte and abundant materials such as sodium and manganese—and is expected to cost $300 for a kilowatt-hour of storage capacity, less than a third of what it would cost to use lithium-ion batteries. Third-party tests have shown that Aquion's battery can last for over 5,000 charge-discharge cycles and has an efficiency of over 85 percent.

The company has now received $30 million in venture capital to step up manufacturing of its sodium-ion batteries. The new technology could be the cheapest way to store large amounts of energy for the power grid using batteries, says Jay Whitacre, the company's founder and chief technology officer.

Aquion's battery uses an activated carbon anode and a sodium- and manganese-based cathode. A water-based electrolyte carries sodium ions between the two electrodes while charging and discharging. The principle is similar to lithium-ion, but sodium ions are more abundant and hence cheaper to use. Compared to solvent-based electrolytes, the aqueous electrolyte is also easier to work with and cheaper. Even better, the materials are nontoxic and the battery is 100 percent recyclable, Whitacre says.

Grid-scale trials of the technology are next. Aquion has started shipping pre-production battery prototypes to off-grid solar power companies. Next month, a 1,000-volt module will go to KEMA, a Dutch energy consulting and testing outfit, which has a facility outside Philadelphia.

Utilities use stored energy to meet electrical demand during peak usage periods, a practice called peak shaving, which helps keep the grid reliable and efficient and electricity prices low. Whitacre says Aquion's battery is designed for these grid applications. "It's very well-suited for off-grid solar and wind support, and also for peak shaving," he says. "It's two very different applications, and our battery has been shown to be effective in both."

John Miller, an electrochemical capacitor expert and president of consulting firm JME in Shaker Heights, Ohio, says Aquion's battery could be the cheapest of the various battery technologies vying to provide grid storage. He compares it to today's most common grid storage technology, pumped hydro, which accounts for 95 percent of utility-scale energy storage. Pumped hydro involves moving water to an elevation when electricity demand is low, and releasing that water through turbines during peak periods. It is, however, limited by geology and space, and pumped hydro systems take many years and millions of dollars to build. Utilities are now starting to look at batteries because they can be delivered in months and, in principle, can be sited anywhere.

"Lead-acid is even too expensive," Miller says. "Aquion's technology is getting to the range of pumped hydro in cost, which is two cents per kilowatt-hour [over the system's lifetime]. They're unique. I would say it's very promising for grid storage."

So far, no available technology meets all grid energy storage requirements, says Haresh Kamath, a program manager for energy storage at the Electric Power Research Institute. "Each technology has a different sweet spot" in terms of cost, safety, reliability, lifespan, and efficiency, he says.

Some power companies use lead-acid batteries and sodium-sulfur batteries for grid storage. Lead-acid batteries are cheap but only last for 500 to 1,000 cycles, while sodium-sulfur batteries are costly at $1,000 a kilowatt-hour. Other technologies on the horizon—lithium-ion, above ground compressed air storage, and flow batteries—remain expensive and unproven.

Grid-storage battery technology also "has to be plug-and-play, and not require extensive installation," says Ali Nourai, an executive consultant at KEMA. Aquion's batteries may have the disadvantage of being as large and heavy as lead-acid batteries, Nourai says, but their low cost and long cycle life make up for that. "The biggest barrier to grid storage is cost, and Aquion has an upper hand there," he says. "People will tolerate low efficiency and high weight if the price is right."

Kamath says that the sodium-ion battery is an interesting new technology, but grid-scale demonstrations will tell whether it has what utilities are looking for. "More than any other, this is a very early stage technology, and we don't know what it's capable of," he says. "Based on principle, it looks very promising, and that's why a lot of folks in this industry are excited about this. But it remains to be seen if the promises are actually played out."

Whitacre has ambitious plans for Aquion, though. The company is making 35-watt-hour units that are modular and stackable at its research and development facility. Next year, the company wants to produce multiple megawatt-hours' worth of batteries at this facility, launch its first commercial product, and break ground on a 500-megawatt-hour capacity factory.


TOPICS: Business/Economy; Culture/Society; Technical; US: Pennsylvania
KEYWORDS: battery; electricity; energy; green

Low-cost battery: Eight units of Aquion’s prototype batteries can be strung together to create a 15-volt module (shown above), which can then be stacked and connected to make even larger modules. Credit: Aquion Energy

1 posted on 09/28/2011 10:27:14 AM PDT by Red Badger
[ Post Reply | Private Reply | View Replies]

To: Red Badger

What about REALLY big batteries where the terrain permits... like you pump water into a high altitude reservoir with peak supply, and then run water turbines for those peak demand hours.


2 posted on 09/28/2011 10:32:41 AM PDT by C210N (0bama, Making the US safe for Global Marxism)
[ Post Reply | Private Reply | To 1 | View Replies]

To: C210N

Yes, pumped hydro. Which was prominently in the article.


3 posted on 09/28/2011 10:35:42 AM PDT by gaijin
[ Post Reply | Private Reply | To 2 | View Replies]

To: Red Badger
The company has now received $30 million in venture capital to step up manufacturing of its sodium-ion batteries.

$30 million is chump change. If he would have made a sizable contribution to ObaMao's campaign, he could have looted half a billion from America's taxpayers.

If this technology actually works, it will be without a government partner. And it might create more evil rich people among the owners and innvestors.

4 posted on 09/28/2011 10:37:22 AM PDT by Vigilanteman (Obama: Fake black man. Fake Messiah. Fake American. How many fakes can you fit in one Zer0?)
[ Post Reply | Private Reply | To 1 | View Replies]

To: C210N

It’s called “pumped hydro.” It’s currently in use, but geography limits the areas where it’s practical.


5 posted on 09/28/2011 10:37:40 AM PDT by I Shall Endure
[ Post Reply | Private Reply | To 2 | View Replies]

To: C210N

Really big battery? How about 40 Megawatts?

http://search.abb.com/library/Download.aspx?DocumentID=9AKK101130D0196&LanguageCode=en&DocumentPartID=&Action=Launch&IncludeExternalPublicLimited=True


6 posted on 09/28/2011 10:43:06 AM PDT by thackney (life is fragile, handle with prayer)
[ Post Reply | Private Reply | To 2 | View Replies]

To: Red Badger
While you are up, get them a $1 billion federal grant.


7 posted on 09/28/2011 10:43:26 AM PDT by nathanbedford ("Attack, repeat, attack!" Bull Halsey)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Vigilanteman
This is true...the EPA will stop this company until such a time when the company makes a substantial contribution to oboza campaign, and a pledge to continue contributions to obozo or other demoncrat candidates.

Which companies succeed or fail is now determined by the EPA wherever possible.

8 posted on 09/28/2011 10:46:36 AM PDT by PoloSec ( Believe how that Christ died for our sins, was buried and rose again for our justification)
[ Post Reply | Private Reply | To 4 | View Replies]

To: Red Badger

bump.


9 posted on 09/28/2011 10:51:32 AM PDT by ken21 (ruling class dem + rino progressives -- destroying america for 150 years.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

If it pans out, sounds like it would be great for off-the-grid.


10 posted on 09/28/2011 10:54:46 AM PDT by heartwood
[ Post Reply | Private Reply | To 1 | View Replies]

To: C210N

“What about REALLY big batteries where the terrain permits... like you pump water into a high altitude reservoir with peak supply, and then run water turbines for those peak demand hours.”

A lot of utilities already do that.


11 posted on 09/28/2011 11:12:29 AM PDT by aquila48
[ Post Reply | Private Reply | To 2 | View Replies]

To: heartwood
If it pans out, sounds like it would be great for off-the-grid.

That's what I was thinking. I wonder if there'll be a DIY version out soon if the materials are so abundant and benign...
12 posted on 09/28/2011 11:29:25 AM PDT by chrisser (Starve the Monkeys!)
[ Post Reply | Private Reply | To 10 | View Replies]

To: Red Badger

I need capacity translated into trolling motor motor units.

1 TM unit (TM/hr) = 1 trolling motor at max capacity for 1 hour. Seriously though, sounds like a very positive leap in technology if it pans out.


13 posted on 09/28/2011 11:35:26 AM PDT by Hootowl99
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger

I need this capacity translated into trolling motor motor units.

1 TM unit (TM/hr) = 1 trolling motor at max capacity for 1 hour. Seriously though, sounds like a very positive leap in technology if it pans out.


14 posted on 09/28/2011 11:35:52 AM PDT by Hootowl99
[ Post Reply | Private Reply | To 1 | View Replies]

To: PoloSec
Which companies succeed or fail is now determined by the EPA wherever possible.

The EPA has the whole country by the gonads and gives no indication of quitting squeezing.

And our Supreme Court opened the gate when it held that carbon dioxide is a pollutant.

15 posted on 09/28/2011 11:37:12 AM PDT by Ole Okie (!!!?)
[ Post Reply | Private Reply | To 8 | View Replies]

To: Red Badger

Still pricey...

A good car battery can store that much energy (1KW-hr) for about $100, so I don’t understand the big deal.


16 posted on 09/28/2011 11:51:38 AM PDT by aquila48
[ Post Reply | Private Reply | To 1 | View Replies]

To: aquila48

Conventional lead-acid batteries are very cheap, but they do not have a high charge-discharge-recharge cycle rate. They wear out relatively fast...........


17 posted on 09/28/2011 12:02:06 PM PDT by Red Badger ("Treason doth never prosper.... What's the reason? Why if it prosper, none dare call it treason.")
[ Post Reply | Private Reply | To 16 | View Replies]

To: Red Badger

If these batteries will be as good as promised, then surely “the grid” (1) it not their only potentially great use, but also (2) the ability to leave “the grid” when a locality, or local source of demand, has sufficient resources to produce its own power, and increasingly so as that becomes increasingly cost effective and practical as energy technology develop, including the backup and “spare” capacity such batteries can offer.


18 posted on 09/28/2011 12:55:47 PM PDT by Wuli
[ Post Reply | Private Reply | To 1 | View Replies]

To: Red Badger
let's assume this is not vaporware like most of these stories. Batteries still have a very, very long way to go. If I wanted to be off-grid, and choose to put up solar panels, which also are not cost-effective, I'd need electricity storage for over night and to make up for cloudy days.

In Texas, on a hot day, my house can use 90 kwh of electricity. Let's just just 30 kwh is used between sunset and sunrise. According to the article, this battery will store 1kwh for $300. So $9k is needed just to go over night at a minimum. But that is not even close to what you would need to cover say a 3 day rain event - assuming it ever rains in Texas again. I'm thinking one would need at least 150kwh of storage, as a guess, to be off grid - that's $45k - crazy expensive.

Still need to cut the cost by a factor of 10.

19 posted on 09/28/2011 3:08:54 PM PDT by rigelkentaurus
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson