Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Homeland Security takes on The Carrington Event (Solar Flare in 1859)
Whats up With That? ^ | February 14, 2012 | Anthony Watts

Posted on 02/14/2012 12:51:39 PM PST by Ernest_at_the_Beach

While we worry about future threats like global warming, and present threats like Iran’s escalating nuclear program, the sun’s propensity for belching out monstrous solar flares (like the Carrington event of 1859) could almost instantly create a world without modern conveniences, or even electricity. The sun could literally “bomb us back to the stone age”.

Imagine a world without iPhones, and you’d understand why Homeland security rates New York and Seattle the highest for likelihood of major social unrest. Humans don’t do well in the dark. DHS has taken notice.

Above: A modern solar flare recorded Dec. 5, 2006, by the X-ray Imager onboard NOAA’s GOES-13 satellite. The flare was so intense, it actually damaged the instrument that took the picture. Researchers believe Carrington’s flare was much more energetic than this one.

First some history, from NASA:

At 11:18 AM on the cloudless morning of Thursday, September 1, 1859, 33-year-old Richard Carrington—widely acknowledged to be one of England’s foremost solar astronomers—was in his well-appointed private observatory. Just as usual on every sunny day, his telescope was projecting an 11-inch-wide image of the sun on a screen, and Carrington skillfully drew the sunspots he saw.

On that morning, he was capturing the likeness of an enormous group of sunspots. Suddenly, before his eyes, two brilliant beads of blinding white light appeared over the sunspots, intensified rapidly, and became kidney-shaped. Realizing that he was witnessing something unprecedented and “being somewhat flurried by the surprise,” Carrington later wrote, “I hastily ran to call someone to witness the exhibition with me. On returning within 60 seconds, I was mortified to find that it was already much changed and enfeebled.” He and his witness watched the white spots contract to mere pinpoints and disappear.

It was 11:23 AM. Only five minutes had passed.

Just before dawn the next day, skies all over planet Earth erupted in red, green, and purple auroras so brilliant that newspapers could be read as easily as in daylight. Indeed, stunning auroras pulsated even at near tropical latitudes over Cuba, the Bahamas, Jamaica, El Salvador, and Hawaii.

Even more disconcerting, telegraph systems worldwide went haywire. Spark discharges shocked telegraph operators and set the telegraph paper on fire. Even when telegraphers disconnected the batteries powering the lines, aurora-induced electric currents in the wires still allowed messages to be transmitted.

“What Carrington saw was a white-light solar flare—a magnetic explosion on the sun,” explains David Hathaway, solar physics team lead at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

=============================================================

We’ve discussed before at WUWT what might happen if a Carrington Class solar flare induced Geomagnetic storm happened today. From my view, it is not a matter of if, but when.

The likely outcome is a broad scale collapse of power grids, frying of satellites, and collapse of our delicate silicon based microelectronics networks. Fortunately, we may have enough warning to shutdown everything ahead of time to minimize damage, but will we do anything about it?

The Department of Homeland Security has created this report on the issue, I’ve posted excerpts below.

=============================================================

EXECUTIVE SUMMARY

Over the last six years, natural hazards have caused catastrophic consequences across the globe. Tsunamis, hurricanes, flooding, earthquakes, and volcanic eruptions have led to hundreds of thousands of fatalities and billions of dollars in economic costs. Geomagnetic storms—a type of space weather—are much less frequent, but have the potential to cause damage across the globe with a single event. In the past, geomagnetic storms have disrupted space-based assets as well as terrestrial assets such as electric power transmission networks.

Extra-high-voltage (EHV) transformers and transmission lines—built to increase the reliability of electric power systems in cases of terrestrial hazards—are particularly vulnerable to geomagnetically induced currents (GICs) caused by the disturbance of Earth‘s geomagnetic field. The simultaneous loss of these assets could cause a voltage collapse and lead to cascading power outages. As a natural event whose effects are exacerbated by economic and technological developments, geomagnetic storms pose a systemic risk that requires both domestic and international policy-driven actions.

As part of the OECD Future Global Shocks project, this case study on geomagnetic storms was undertaken to identify the strengths, weaknesses, and gaps in current international risk management practices. The literature on geomagnetic storm risk assessments indicates that the state of the art for assessing the security risk from this type of event is still inchoate. There are examples of analyses that describe threat, vulnerability, and consequence, but they are not integrated, primarily because of the weakness in the threat analysis. The lack of valid risk assessments has limited risk mitigation efforts in many critical infrastructure sectors, as it is difficult to demonstrate the utility of investing in either hardening or operational mitigation efforts, especially if these investments reduce time and money spent in preparing for more common risks.

To explore the risk to the international community, this report presents a platform to discuss the risk of geomagnetic storms by describing a worst reasonable scenario and its risk factors. Our analysis identifies areas with EHV assets that are in vulnerable locations due to latitude and ground conductivity, and examines the first- and second-order consequences of an extreme storm, highlighting those consequences with an international impact such as scarcity of surplus EHV transformers and satellite communication signal degradation. In addition to exploring the expected economic consequences of a geomagnetic storm event, the report also assessed psychological consequence in the form of social unrest, behavioral changes and social vulnerability.

The potential for international consequences if an extreme event occurs are high, although the severity of those consequences can be mitigated if the international community takes certain actions in advance, such as investing in additional geomagnetic storm warning systems.

Geomagnetic storms can be categorized as a global shock for several reasons: the effects of an extreme storm will be felt on multiple continents; the resulting damage to electric power transmission will require international cooperation to address; and the economic costs of a lengthy power outage will affect economies around the world. As a global shock event, a severe geomagnetic storm, although unlikely, could lead to major consequences for OECD governments.

================================================================

I found this graphic in the report interesting, it suggests that New York, New England, and Seattle are the worst places to be in a Carrington type event. “Get outta Dodge” takes on a whole new meaning due to the social unrest that is likely:

image

===============================================================

RECOMMENDATIONS

The consequences of an extreme geomagnetic storm certainly would be severe at the local and national levels. The failure of transnational electric power systems would set off a series of cascading effects, including the disruption of government operations. The potential for international consequences if an extreme event occurs are high, although the severity of those consequences can be mitigated if the international community takes certain actions in advance. In particular, recommendations 1 through 3 provide low-cost mitigation mechanisms the international community can pursue to manage the international risks posed by an extreme geomagnetic storm.

1. The international community should mitigate against the risk of a single point of failure in the current space weather warning and alert system.

The investments that some nations have made in warning systems provide a valuable tool in helping all nations lower the risk of such catastrophic consequences. Today, the ACE satellite represents a critical possible point of failure in the global geomagnetic storm alert and monitoring network. The international community is relying on the United States of America to replace ACE. Although funds have been proposed in the FY11 U.S. Department of Commerce budget to fund an ACE replacement, DISCVR, the international community should carefully consider investing in additional satellite resources to complement the ACE replacement‘s planned CME directional detection capabilities.

2. The international community should improve the current geomagnetic storm warning and alert system.

The efforts to date fostered under ISES, and those of the SWPC in particular, are laudable. But, significant room for improvement remains in the international geomagnetic storm warning and alert infrastructure. First, understanding the consequences of geomagnetic storms requires a greater understanding of the ground induced currents resulting from those storms. Greater investment in magnetometers worldwide and integration of the resulting data would improve the SWPCs ability to assess storm severity.

The international geomagnetic storm alerting and warning community currently uses a 5- level scale to communicate the severity of an impending geomagnetic storm. This scale lacks sufficient granularity at the high end to provide useful tactical guidance to geomagnetic storm alerting and warning information customers. As consumers of space weather forecasting services, the electric power industry would benefit from greater granularity differentiating between severe and extreme geomagnetic storms for tailored operational mitigation measures.

3. Electricity-generating companies should be encouraged to harden high-voltage transformers connecting major power generating assets to electric grids.

Even with warning and alert procedures in place, operational mitigations may be overwhelmed by a sufficiently large storm. Hardening all critical infrastructures against geomagnetic storms is neither economically cost-effective nor technically possible. Hardening high-voltage transmission lines with transmission line series capacitors and the transformers connected to these lines through the installation of neutral-blocking capacitors is possible. But, doing so for all utilities supporting 345 MV and above would prove economically prohibitive (Molinski, 2000). For instance, since the 1989 Quebec electricity outage, Hydro-Quebec has spent more than $1.2 billion on transmission line series capacitors (Government of Canada, 2002). Although hardening all high-voltage transmission lines and transformers is not likely an economically viable strategy, OECD member governments should consider encouraging electricity generation companies and publicly owned utilities to harden transformers connecting critical electricity generation facilities to their respective electrical grids. Ensuring the survival of these high-voltage transformers in the event of an extreme geomagnetic storm will facilitate faster restoration of national electrical grids and remove part of the likely demand for replacement high-voltage transformers in an extreme geomagnetic storm scenario.

4. OECD members should define an allocation process for replacement high-voltage transformers in the event of increased international demand following an extreme geomagnetic storm.

As discussed above, the major international aspects from such an event are likely to be competition for limited resources necessary for recovery of electric power transmission capabilities. Joint planning, therefore, is a clear necessity. The international community would be wise to establish a framework or at least a forum for discussing various mechanisms for prioritization of needs in a competitive environment. Willingness to cooperate post-crisis, however, will depend in many ways on the individual nations‘ policies and planning prior to the crisis, and likely anticipated demands from consumers, both individual and corporate. If one nation invests nothing in warning, emergency procedures, and exercises, for example, it will have difficulty arguing that it should be first in line to receive replacement transformers after a disaster strikes.

Similarly, the international community should have a common understanding of how and when to communicate the possibility of catastrophic effects from an extreme geomagnetic storm prior as an immediate alert. Public panic and unrest can be caused or exacerbated by conflicting or inaccurate information. Clear communications are facilitated by plans and international understanding of roles and responsibilities that have been established prior to an emergency.

To ensure that each participating nation participates to a degree to support such an international partnership, it may be helpful to conduct a more thorough risk assessment. The assessment included in this report is based largely on existing data that have severe limitations and assumptions where there are no data. There are many aspects of the scenario presented here that could be improved through simulation, exercises, and additional analysis of operational procedures. The physical aspects of geomagnetic storms are relatively well known. The reaction of infrastructure operators, the public, and government leaders are more uncertain. These require more thorough understanding so that appropriate incentives can be developed for optimum policy development and implementation.

5. National governments should conduct mission disruption assessments.

The critical infrastructure interdependence analysis included in this report indicates a wide range of critical infrastructure sectors and sub-sectors would suffer second-order consequences stemming from the first-order consequences of an extreme geomagnetic storm. This analysis identifies eight critical infrastructure sectors and sub-sectors likely to experience first-order disruptions as a result of an extreme geomagnetic storm:

1. Communications (Satellite)
2. Communications (Wireline)
3. Energy (Electric Power)
4. Information Technology

5. Transportation (Aviation)
6. Transportation (Mass Transit)
7. Transportation (Pipeline)
8. Transportation (Rail)

As described starting on page 27, disruptions to three of these critical infrastructures would drive second-order disruptions to other critical infrastructures. For example, an extreme geomagnetic storm would result in widespread outages in the electric grids of the U.S.A. and Canada, in turn driving second-order disruptions to 20 other critical infrastructure sectors and sub-sectors (using U.S. DHS definitions for critical infrastructure sectors and sub-sectors). The extreme geomagnetic storm described in the scenario also would drive similar widespread electricity outages in Western Europe and Scandinavia, with second-order consequences similar to those suffered in the U.S. and Canada likely. The scale of these second-order consequences will vary from country to country, depending on a range of factors such as domestic legislation dictating back-up power requirements for hospitals.

The potential for cascading effects on critical infrastructure stemming from an extreme geomagnetic storm means OECD member governments should carefully consider conducting formal risk assessments in at least two areas. First, at a minimum, OECD members should conduct critical infrastructure dependence exercises determining the cascading effects of the loss of electric power. In addition to providing insight into the consequences stemming from an extreme geomagnetic storm, this form of risk analysis will also be applicable to other hazards that could interrupt electricity supplies. Second, OECD member governments should conduct assessments evaluating their dependence on space-based assets for continuity of government. An extreme geomagnetic storm could result in both short- and longer-term disruptions to space-based assets leveraged by OECD member governments for communications, navigation, and information technology.

6. The international community needs a commonly applied methodology to evaluate social vulnerability.

The international community lacks a commonly accepted methodology to assess social vulnerability across national lines. With increasing interest in the implications of social unrest as a global shock, the OECD should take a leading role in facilitating the development of methodology that could be applied internationally. The analysis in this report uses the University of South Carolina Social Vulnerability Index, which is designed for analysis within the United States. This has provided useful insight into the contributors to social vulnerability and comparative analysis for prioritization efforts. To compare similar phenomena across national boundaries, the international community would need to overcome challenges of inconsistent population area definitions, internationally comparable socio-economic factors, and political considerations that allow for application to a variety of types of government, emergency management, and hazard mitigation. The benefits would be a more robust approach to comparing a wide variety of hazard risks to nations and populations across the globe.

====================================================================

Read the full report here

h/t to Dr. Leif Svalgaard


TOPICS: Extended News; Government; News/Current Events
KEYWORDS: solarflares

1 posted on 02/14/2012 12:51:48 PM PST by Ernest_at_the_Beach
[ Post Reply | Private Reply | View Replies]

To: Ernest_at_the_Beach
Humans barbarians don’t do well in the dark.

Fixed it.

2 posted on 02/14/2012 12:56:33 PM PST by BenLurkin (This is not a statement of fact. It is either opinion or satire; or both)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Ernest_at_the_Beach
Did the Carrington Event send people in the 19th century back to the Stoned Age?

Cycle 19 (1954-1964) was the worst cycle during the 20th century for sunspot and storms. Did we go back to the Stone Age during that time?



Solar Cycle 25 is expected to be rather small.


First Estimate of Solar Cycle 25 Amplitude – may be the smallest in over 300 years
http://wattsupwiththat.com/2012/01/25/first-estimate-of-solar-cycle-25-amplitudesmallest-in-over-300-years/
I expect 2059 to be about the time we'll see another increased probability for a Carrington Event.
3 posted on 02/14/2012 1:07:46 PM PST by Jack Hydrazine (It's the end of the world as we know it and I feel fine!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Ernest_at_the_Beach

Our gov worries too much.


4 posted on 02/14/2012 1:08:12 PM PST by DonaldC (A nation cannot stand in the absence of religious principle.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Ernest_at_the_Beach

Years ago, I visited the McDonald’s Observatory in far West Texas—one of the least light polluted places in the USA. At the vistito’s center, I saw a documentry including a discussion about the magnetic field of the Earth. An animation showed the Earth as a small blue marble in a fiery red steam of solar energy. Only the magnetic field kept it from, burning up. All of a sudden I felt vulnerable. Will never forget the feeling.


5 posted on 02/14/2012 1:40:34 PM PST by RobbyS (Christus rex.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: RobbyS

“An animation showed the Earth as a small blue marble in a fiery red steam of solar energy. Only the magnetic field kept it from, burning up. All of a sudden I felt vulnerable. Will never forget the feeling.”

And you can thank God the Creator for protecting you by such intelligent design, not some act of evolution as some scientists will.


6 posted on 02/14/2012 1:55:01 PM PST by howlinhound (Live your life so that, when you get up in the morning, Satan says, "Oh Crap!..He's awake" - Unknown)
[ Post Reply | Private Reply | To 5 | View Replies]

To: DonaldC
After reading this article......I think we need to worry more about our government: the entire emphasis was on coordinating planet wide preparations and response. Not an American response but an "international" response.

Then I looked at that map and asked myself, “What would the U.N. do if it was given a say-so in handling the ‘high risk’ areas? Attempt to confiscate firearms as was done in post Katrina New Orleans?”

The threat posed by the traitorous bureaucrats in Washington is more frightening than any threat from the sun. Truly scary stuff.

7 posted on 02/14/2012 2:08:35 PM PST by BenLurkin (This is not a statement of fact. It is either opinion or satire; or both)
[ Post Reply | Private Reply | To 4 | View Replies]

To: howlinhound
And you can thank God the Creator for protecting you by such intelligent design, not some act of evolution as some scientists will.

Yet almost all of the planets God created are hostile to life.

8 posted on 02/14/2012 2:15:52 PM PST by Moonman62 (The US has become a government with a country, rather than a country with a government.)
[ Post Reply | Private Reply | To 6 | View Replies]

To: Jack Hydrazine

Our dependence on vulnerable systems has increased exponentially since 1964. There are fewer people even close to self sufficient than then, too.


9 posted on 02/14/2012 2:18:25 PM PST by JimRed (Excising a cancer before it kills us waters the Tree of Liberty! TERM LIMITS, NOW AND FOREVER!)
[ Post Reply | Private Reply | To 3 | View Replies]

To: Ernest_at_the_Beach

Imagine a world without iPhones, and you’d understand why Homeland security rates New York and Seattle the highest for likelihood of major social unrest.

Don’t have to imagine. We don’t have iphones and have no plans to ever have one.


10 posted on 02/14/2012 3:14:01 PM PST by SECURE AMERICA (Where can I sign up for the New American Revolution and the Crusades 2012?)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Ernest_at_the_Beach
I found this graphic in the report interesting, it suggests that New York, New England, and Seattle are the worst places to be in a Carrington type event. “Get outta Dodge” takes on a whole new meaning due to the social unrest that is likely:

What? No L.A.? No DFW? No Houston? And why are some sparsely populated area's of South Texas more at risk?

11 posted on 02/14/2012 4:37:11 PM PST by Sarajevo (Any connection between your reality and mine is purely coincidental)
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson