Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

State approves use of powerful herbicide [Klamath Falls water rights related]
the Oregonian ^ | 18 July 02 | AP

Posted on 07/18/2002 4:57:40 PM PDT by Glutton

KLAMATH FALLS, Ore. (AP) -- State officials have granted a permit to Klamath Irrigation District to use a powerful herbicide that keeps canals free of weeds but is toxic to fish.

Environmentalists had challenged the district's right to use the herbicide acrolein without a permit.

The district has been using acrolein without a permit for years but held off this year until one was granted.

The Oregon Natural Resources Council last March filed a notice of intent to sue the district over use of acrolein. The district decided to apply for a permit to avoid a lawsuit.

The permit was issued Wednesday after months of research, public hearings and consideration by the Oregon Department of Environmental Quality.

It is the first time the DEQ has issued a permit for acrolein. Nine permits for other state irrigation districts are being considered.

The district has begun acrolein applications, although district canals and drains are already choked with weeds because of the long wait for the permit. The district usually starts applying the chemical in May.


TOPICS: News/Current Events
KEYWORDS: environment; esa; herbicides; klamathlist; waterrights

1 posted on 07/18/2002 4:57:40 PM PDT by Glutton
[ Post Reply | Private Reply | View Replies]

To: farmfriend; Carry_Okie; Jeff Head; nunya bidness; blackie; Grampa Dave
ping
2 posted on 07/18/2002 4:58:41 PM PDT by Glutton
[ Post Reply | Private Reply | To 1 | View Replies]

To: Glutton
Better living through chemistry !!
3 posted on 07/18/2002 5:20:55 PM PDT by blackie
[ Post Reply | Private Reply | To 2 | View Replies]

To: *Klamath_List
.
4 posted on 07/18/2002 5:31:33 PM PDT by Libertarianize the GOP
[ Post Reply | Private Reply | To 2 | View Replies]

To: Glutton
Would we rather they used an "unpowerful" herbicide to kill grass?
5 posted on 07/18/2002 6:26:10 PM PDT by caisson71
[ Post Reply | Private Reply | To 1 | View Replies]

To: Glutton
First, I will say that I know nothing about acrolein. However, most herbicides, though toxic to fish decompose very rapidly. Most have a half-life break down in sunlight of but ten hours. I would therefore need to know more about its decomposition products, the application method, the rate of runoff, and the timing of precipitation before I could have an opinion on this matter.

I use herbicides sparingly, but they have been absolutely necessary for me to help my land recover from noxious weed infestations. In my ten years of restoration projects so far, I have used less than 3.5 gallons of Garlon on ten acres of infested land. When you have that much broom, much of it at concentrations of 200 plants per square yard, you spray or you lose. That situation is even more desperate with thistle species (astercae). I have calculated that the runoff from the property, even if it ALL reached the creek would run less than 0.5 ppt, far below the toxicity threshhold of any living species of which I am aware.

If you had seen what happened in this county because of an adversion to spraying, it would make you cry. We have thousands of tons of poison in our environment, plants so toxic that the pollen causes birth defects, all because of pesticide regulations, foundation landgrabs, and environmental activism.

6 posted on 07/18/2002 7:21:58 PM PDT by Carry_Okie
[ Post Reply | Private Reply | To 1 | View Replies]

To: Glutton
Here is the manufacturer's fact sheet.

I don't know if the farmers in Klamath have a problem with water hyacinth but that is bad stuff and might justify such a treatment. Getting rid of floating weeds might reduce their overall water consumption. I don't know that there are fish in that water (many canals have screens) or how far from a treated canal the lake or other riparian life might be. If groundwater leaching is suspected it doesn't look too likely as bacterial decomposition is effective. If the water from a canal is sprayed onto alfalfa (the predominant crop in that area) the material volatilizes and breaks down rapidly in air.

The biggest risks appear to be from leaching through underground flows. I do not have the hydrological data from that area to have an opinion on whether that risk to fish is significant.

 

SPECTRUM

Chemical Fact Sheet

Chemical Abstract Number (CAS #) 107028
Synonyms Acrolein
2-Propenal
Acrylic aldehyde
Acrylaldehyde
Acraldehyde
<! STARTAG 5 >
Analytical Methods EPA Method 603
EPA Method 8030A
EPA Method 8240B
EPA Method 8260A
EPA Method 8315
Molecular Formula C3H4O
Use MFR COLLOIDAL FORMS OF METALS; MAKING PLASTICS, PERFUMES; WARNING AGENT IN METHYL CHLORIDE REFRIGERANT; HAS BEEN USED IN MILITARY POISON GAS MIXTURES CHEMICAL INT IN SYNTH OF GLYCERIN, ACRYLIC ACID, & ESTERS; PESTICIDE Intermediate for glycerol, polyurethane, polyester resins, & pharmaceuticals AQUATIC HERBICIDE, BIOCIDE, SLIMICIDE MOLLUSCICIDE FOR CONTROL OF SUBMERGED WEEDS (POTAMOGETON, NAJAS, ZANNICHELLIA, CERATOPHYLLUM, SPIROGYRA, & OTHERS) & FLOATING WEEDS (WATER CRESS, WATER HYACINTH & WATER PRIMROSE) IN IRRIGATION CANALS, DITCHES. ALSO AN ALGICIDE. Used as a liquid fuel Chemical intermediate for DL-methionine, its hydroxy analog, and their salts; as a microbiocide in oil wells; Used to make modified food starch Acrolein has received quite a bit of attention as a tissue-fixative in histological work. This property has been utilized for the preservation of red blood cells In world War I, it was used as a tear gas under the name Papite.
Consumption Patterns The largest market for acrolein is for methionine manufacture (1978)
Apparent Color COLORLESS OR YELLOWISH LIQUID
Odor Extremely sharp; Piercingly disagreeable; Extremely acrid, pungent ; Burnt, sweet
Boiling Point 52.5 DEG C @ 760 MM HG
Melting Point -88 DEG C
Molecular Weight 56.06
Density 0.8389 @ 20 DEG C; 0.8621 @ 0 DEG C; 0.8075 @ 50 DEG C
Odor Threshold Concentration 0.21 PPM PURITY NOT SPECIFIED Air: 0.16 ul/l; Water: 0.11 mg/l; Odor safety class D; D= 10-50% of attentive persons can detect TLV concn in the air Low= 0.0525 mg/cu m; High= 37.5000 mg/cu m; Irritating concn= 1.25 mg/cu m.
Sensitivity Data Acrolein produces intense irritation to the eye and mucous membranes of the respiratory tract. Intense lacrimation & nasal irritation The general sequence of acrolein irritation is concentration-time dependent eg, 1 ppm for 1 min gives slight nasal irritation; 1 ppm for 5 min gives intolerable eye irritation; 5.5 ppm for 5 seconds gives moderate eye irritation; & 5.5 ppm for 1 min produces marked lacrimation.
Environmental Impact Acrolein is released to the environment: (a) in emissions and effluents from its manufacturing plants and facilities which use this compound as an intermediate, (b) in exhaust gas from combustion processes, (c) from direct application to water and wastewater during use as an aquatic herbicide and slimicide, and (d) as a photooxidation product of various hydrocarbon pollutants found in air including 1,3-butadiene. If released to moist soil, acrolein is expected to be susceptible to extensive leaching. Biodegradation under aerobic conditions may be an important fate process. Acrolein is predicted to volatilize rapidly from dry soil surfaces. If released to water, acrolein may biodegrade under aerobic conditions, volatilize (half-life of 7 hours from a model river), or undergo reversible hydration to beta-hydroxypropionaldehyde (half life of 21 days). The overall half-life of acrolein in water is reported to range between 2 to 6 days. Bioaccumulation in aquatic organisms, adsorption to suspended solids and sediments, reaction with singlet oxygen or alkylperoxy radicals, and photolysis are not expected to be important fate processes in water. If released to the atmosphere, the dominant removal mechanism is expected to be reaction of acrolein vapor with photochemically generated hydroxyl radicals (half-life of 10-13 hrs). Products of this reaction include: carbon dioxide, formaldehyde, and glycolaldehyde, and in the presence of nitrogen oxides include: peroxynitrate and nitric acid. Small amounts of this compound may be removed from the atmosphere by wet deposition. Reaction with ozone and direct photolysis are not expected to be important fate processes in the atmosphere. The most probable routes of exposure to acrolein by the general population are inhalation of contaminated air and ingestion of foods which contain this compound. Worker exposure may occur by dermal contact and/or inhalation.
Environmental Fate AQUATIC FATE: EXPTL DATA FOR DECAY OF ACROLEIN IN WATER INDICATE APPROX 1ST ORDER KINETICS. THE REACTION CONTINUED TO COMPLETION IN NATURAL WATER. DATA ON EFFECTS OF PH ON DECAY OF ACROLEIN MAY BE USED AS A CONSERVATIVE ESTIMATE OF DISSIPATION RATE. IN WATER FLOWING IN 2 CHANNELS, AN 8 TO 10 FOLD DISCREPANCY BETWEEN OBSERVED & PREDICTED RATES OF DISSIPATION WAS ATTRIBUTED TO MAJOR LOSSES IN VOLATILIZATION & ADSORPTION. A RELATIVELY NONVOLATILE REACTION PRODUCT (WHICH GAVE A POSITIVE REACTION WITH DINITROPHENYLHYDRAZINE) ACCUMULATED INITIALLY BUT DISSIPATED. TERRESTRIAL FATE: In the terrestrial environment, it is estimated that acrolein would have a low tendency to adsorb on soil and would probably volatilize into the air or be leached from the soil by water. AQUATIC FATE: Half-life in water at pH 5, 150 hr; at pH 7, 120-180 hr; at pH 9, 5 to 40 hr. AQUATIC FATE: Acrolein is removed from aqueous environments, with half-lives usually on the order of less than a day. The primary loss process appears to be an initial hydration (and possibly some biotransformation) to beta-hydroxypropionaldehyde, which is then further biotransformed. Due to its high vapor pressure and water solubility, acrolein is expected to be highly mobile when released into the environment, although degradative processes are likely to limit its transport. AQUATIC FATE: If released to water, acrolein may biodegrade under aerobic conditions, volatilize (half-life = 7 hours from a model river), or undergo reversible hydration to beta-hydroxypropionaldehyde (half-life = 21 days). Bioaccumulation in aquatic organisms, adsorption to suspended solids and sediments, reaction with singlet oxygen or alkylperoxy radicals, and photolysis are not expected to be important fate processes. It is reported that acrolein applied to natural waters at rates suggested for herbicidal use will persist up to 6 days depending on water temperature . Acrolein added to irrigation channels at initial concentrations of 6.1, 17.5 and 50.5 ppm underwent 100% loss in 12.5 days . Removal rate constants ranging from 0.27-0.34 1/days were calculated by linear regression. These values correspond to half-lives of 2.0-2.5 days . ATMOSPHERIC FATE: If released to the atmosphere, acrolein is expected to exist almost entirely in the vapor phase based on a vapor pressure of 220 mm Hg at 20 deg C(1,2,SRC). The dominant removal mechanism is expected to be reaction with photochemically generated hydroxyl radicals (t1/2 10-13 hours). Products of this reaction include: carbon dioxide, formaldehyde, and glycolaldehyde. In the presence of nitrogen oxides products include peroxynitrate and nitric acid. Detection of acrolein in rainwater samples suggests that small amounts of this compound may be removed from the atmosphere by wet deposition. Reaction with ozone and direct photolysis are not expected to be important fate processes.
Drinking Water Impact SURFACE WATER: USEPA STORET Data Base - 798 water samples, 0.25% pos., median concn <14 ug/l . EFFL: Present in 6 out of 11 samples of municipal effluent from Dayton, OH, concn range 20-200 ug/l . Detected in raw sewage in 2 sewage treatment plants in Chicago at concn ranging from 216-825 ug/l; although concn in final effluents were below 100 ug/l . USEPA STORET Data Base - 1265 effluent samples, 1.5% pos., median concn <10.0 ug/l . Acrolein has been identified in emissions from: plants manufacturing acrylic acid, not quantified; coffee roasting operations, ND-0.6 mg/cu m (detection limit not reported); from a lithographic plate coater, <0.23-3.9 mg/cu m; and from an automobile spray booth, 1.1-1.6 mg/cu m . Detected om 1 out of 5 leachate samples from a Wisconsin municipal solid waste landfill .

DISCLAIMER - Please Read
Return to :
Alphabetical List of Compounds
List of Compounds by CAS Number
List of Services
Spectrum Laboratories Homepage

7 posted on 07/18/2002 11:18:22 PM PDT by Carry_Okie
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson