Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Propulsion Isn't Just Everything, It's The Only Thing
spacedaily ^ | 6 Nov 01 | Rick Fleeter

Posted on 11/07/2001 2:35:31 PM PST by RightWhale

Propulsion Isn't Just Everything, It's The Only Thing

by Rick Fleeter

Washington - Nov 6, 2001


(Ed.) A set of personal anecdotes deleted to save bandwidth . . .

The rest of the article:


Which is excellent preparation for being a space groupie - my smug label for people who constantly goad any organization with money - mostly governments - to spend more of it on space, send people to Mars, occupy the Moon, and in general project humanity all over the as yet pristine universe. My goals are more modest: if Space did half as much for human life as the pencil or the automatic transmission, I could die content. For now, I live in frustration, which, I'll admit, I enjoy tremendously. I somehow enjoyed watching my girlfriend kiss her fish every morning and evening, and I got some satisfaction out of foregoing getting my work done to hear my neighbor on yet another long flight describe his transition from lawyer to musician (yes, we were en route to LA). I told myself - if I were really a writer, I'd be eating this stuff up, instead of obsessing about the 200 emails bloating my inbox.

What makes space the playground of people who share my love of frustration, who need a rather large synaptic gap between their own world view and reality? Is it the surely bonds of earth, the lure of the stars, and the need to be at one with the Infinite? Unfortunately, it's much easier than that. It is propulsion.

Maybe everything I know I learned from people sitting next to me on trains and planes and chairlifts. I made a three-hop semi-cross-country value priced trip on Southwest seated next to a pot bellied, red-nosed WWII vet with a visor cap from the 50th reunion of whatever ship it was he spent the war aboard. I tried to do the math - he seemed too old to have fought in WWII - career grunt, I reasoned. He told me, speaking of flights with lots of stops (who was?) about his first cross country flight on a DC-3. As a guy with lots of hours in propeller planes, many of them with 2 radial engines, his story of 3 hour hops covering maybe 250 miles, spliced together to reach Los Angeles, created sympathetic flying symptoms in me - particularly, sore ear drums. In those days, flying cross country was faster, but in all other senses worse, than taking a train or bus. The future of flying for any applications other than carrying mail across the Andes or fighting wars was cloudy - airplanes were slow, noisy, small (and hence uneconomical), dangerous and subject to every inch of weather between departure point and destination.

The jet engine changed all that. Suddenly we could carry hundreds of people aboard a flight, move them at nearly the speed of sound, through the mostly weather-free atmosphere at 38,000 feet, all the way across the country, or the Atlantic or Pacific, non-stop. Now we take for granted plenty of spare power for pressurization of the cabin, for deicing the wings with ample bleed air, for running movies and for carrying mail, freight, luggage and even toilets equipped with 110 VAC for razors. We have power to heat meals and coffee, power to run weather radars and lots of fancy avionics which make the flight even more safe and efficient. Look at the best propeller planes of today - they are still noisy, slow, fly low and weather affected. They are inferior even to a high speed train, now that rail has transformed itself by switching to electric vehicles instead of steam or Diesel.

Propulsive power even more radically changed road transportation, and the lives of nearly every person on the planet. People walked and rode horses for tens of thousands of years - until the automobile. Suddenly we could travel 100 times farther in a day, on our own, in air conditioned comfort, without care and feeding of a horse. We can carry an entire family and its luggage cross country in a few days. A city 50 miles across, like LA or New York, is not only conceivable - it's common around the world. We have buses and trucks hauling huge quantities of people and materials. It's such a fundamental feature of modern life, so vital to everything we do as human beings, that we can't even conceive of life without motorized cars, trucks and buses to carry us and our voluminous and heavy stuff around.

Motive power is fundamental to transportation, and a lot of other things. Lithium Ion batteries plus power saving electronics and software have given us cell phones and laptops that are slim, lightweight and run for hours. Without fuel cells, we wouldn't have reached the moon. Electric rockets are propelling missions like Deep Space - 1, and enabling a new class of more capable geosynchronous satellites. Change the propulsion system, and you change the game - not just by a few percent - you change the paradigm.

Paradigm changing is definitely what space transportation needs. Just as jet aircraft have now plateaued in speed, range and economy, with minute percentile changes from model to model, rockets aren't getting any cheaper, or any more reliable. With transportation costing upwards of $10,000 per kg - and many times that for smaller rockets, even very modest space missions - like putting five people on the space station with everything they need for a week's space vacation - is ridiculously expensive. A good number would be - $100M. Maybe $500M if you transport that family of five into orbit via the Space Shuttle. Taking three people to Mars with the stuff they need to stay a few days and return to earth is going to cost, just in transportation, possibly $10B - not including the cost to develop the rockets in the first place. Including that, maybe it's $100B. Nobody spends $10B on a rocket without making sure they are launching something valuable on top of it, ensuring that the cost of any space mission beyond LEO, rocket plus its payload, including humans, is going to absorb something like the GNP of a moderate sized country for many years. And in so doing, what will we have accomplished? Another one-time, bank account breaking stunt? The few billion rest of us will watch it on CNN.

Hence the romantically scintillating mismatch of the space groupie with the object of her or his affections - space travel, exploration, habitation and tourism. With our current dinosauric propulsion systems, sustained development of extraterrestrial destinations is as realistic as a bicoastal marriage in the era of the covered wagon. The mismatch is so exquisite, that all of us in our industry are drawn as moths to the light of the rocket plume. The very cost and complexity, the near impossibilty, of space transportation using chemical rockets, attracts our breed of tough minded, soft hearted space-niks. NASA and the USAF spend billions on attempts, mostly futile, to lower launch costs using chemical rocketry. Papers are written on space tourism and books on doing Mars on the cheap. Societies are started to promote space travel for everybody, and even exciting conspiracy theories are hatched about NASA and the space community purposely maintaining exorbitant transportation costs to reserve the realm of space just for their greedy selves, and / or to ensure big profits for aerospace contractors.

The vast gulf between the reality of propulsion and what is necessary to realize our vision of space enables us all to march forward every day as bold visionaries - some might say kooks - focused on a future practical people can't envision. We pity them, chained to earth by their practical nature. How boring it would be to admit that all of these space visions are completely feasible with better propulsion. Space transportation priced closer to $10/kg would make construction of space hostelries practical - conceivable by normal business people focused not on a future only possible in science fiction, but by short term return on investment. The ability to accelerate to a significant fraction, say 10%, of the speed of light would make visitation to all the solar planets a routine and daily phenomenon, not much more exotic than riding a bathysphere to a mid-ocean rift. The moon would become not (just) a vast laboratory for space scientists, but a playground for adventuresome tourists, maybe a place to get a break from the grind of life in 1-g without the discomforts and limitations of on-orbit life. On the moon, you could go for a drive, and even go wandering by foot around the surface, play golf, wearing a pressure suit, of course. With time the pressure suits would improve and travelers would buy them in ancitipatory excitement, as triathletes now buy yellow wet suits for their open water swims.

The space community is engaged in a valiant, gallant, exciting, but ultimately tragic and futile, battle to garner that next huge hunk of government money to do the next nearly impossible and definitely pointless trick in space. We planted a few people and their gear on the moon for a few days a few decades ago. Among Skylab, Mir and Freedom, we've managed to house a few people in orbiting platforms for a few days, weeks or even a year or so, at tremendous expense. And maybe one day, if we are ever so rich and so at peace and so bankrupt of better ideas, or alternatively so paranoid of being out-done by our rivals, we'll put two people on Mars to repeat the Apollo experience at 100 times the distance and expense. Exhausted and broke from the experience, we will retreat to Earth and maybe low earth orbit, for 10 or maybe for 100 years. The average person will, after all that time, money and politiking, be no closer to experiencing space than we were in 1965.

There is an alternative - another way. It is unromantic, unappealing to the visionary believers and elitists that see space in ways the rest of us, rooted in our mundane practicality, cannot. It is difficult, arcane, intellectually challenging and impossible to map into the future in any orderly way. It is expensive, but not nearly so expensive as the futility of trying to take inappropriate propulsion systems ever farther from earth on ever slimmer margins at ever larger budgets spread over ever longer program durations.

This alternative is to invest aggressively in propulsion. God may have given us hydrogen and oxygen, but She gave us a lot more stuff. Photons, Ions, subatomic particles, matter and anti-matter, field interactions, ramjets and interplanetary and interstellar materials to fuel them, including the solar wind. Carbon matrix structures for building a Jacob's Ladder to GEO. Frankly, as a chemical rocket guy, I have no idea which if any of these might ultimately make travel to orbit as commonplace as the Metroliner to Boston, or accelerate us to 0.1c for $10/kg. But what I do know, as a chemical rocket guy, is that hydrogen and oxygen, or any other simple chemical bond breaking and making rocket, won't, any more than coal, anthracitic, bituminous or otherwise, was going to take us from LA to Tokyo in 9 hours, or horses would build the America of the 21st century with its great cities, its suburbs and its clean streets.

The good news is that the human spirit will not, contrary to enthusiastic and dire warnings to the contrary, be extinguished should we abandon our Quixotic reach for the stars armed with rockets suitable at best for brief, barely exoatmospheric excursions. If we embark on a well funded, broad-based, long range program to revolutionize space propulsion, the space groupies will still meet in their space societies, still gripe, even louder, about our stubborn lack of will to go where no person has ever gone before, and still see a future that most of us can't. The coyote will still bay at the full moon, and teenagers will fall in love across racial, financial and cultural boundaries. Nothing much will change in our world, except that if we stay that course, humans will one day master a new technology - as fundamental as electronics - a sustainable, practical, readily available, economical means for everyone to experience space first hand, to bring it literally as close as the next town down the interstate, to occupy the moon and planets, and to travel even to other stars. And that's a bigger change than any of us can today envision.




TOPICS: Culture/Society; Editorial; Extended News
KEYWORDS:
Navigation: use the links below to view more comments.
first 1-2021-4041-6061-74 next last
Thanks, Rick. Agreed the paradigm needs adjustment. But it's not really as bad as all that. We need to focus on getting over the earth-to-LEO barrier. We don't need photon drive or buckyball beanstalks. We need to look at the system. Space is full of raw materials. Sure, we have to transport our own bodies up and back, but all the gear can stay up there. And we can make more gear up there from stuff avaialable up there. We can even use the photon drive once we're up there. The price of an earth to orbit roundtrip is $20 million per person. That can be improved, but it's already way better than most people realize. From orbit, you are already halfway to anywhere. Somebody said that, Heinlein maybe. For another $20 million that stock market entrepreneur could have gone to Mars if he had set things up right. Hear that, Rick? Mars and back, $40 million. BG could do it 1000 times if he thought about it.
1 posted on 11/07/2001 2:35:38 PM PST by RightWhale
[ Post Reply | Private Reply | View Replies]

To: RightWhale
"It Certainly is, Olie!"
2 posted on 11/07/2001 2:45:09 PM PST by elbucko
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
"It Certainly is, Olie!"
3 posted on 11/07/2001 2:45:21 PM PST by elbucko
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
We need to focus on getting over the earth-to-LEO barrier.

You people continue to get it wrong, and I'm always amazed that you continue to get it wrong.

"Earth-to-LEO" orbit is irrelevant. "Halfway there once you're in Earth orbit" is irrelevant. Price-per-person-per-trip to orbit is irrelevant.

Until, and ONLY until, there is a COMPELLING ECONOMIC INCENTIVE FOR CORPORATIONS, SYNDICATES, and WEALTHY--VERY WEALTHY--VENTURE CAPITALISTS to fund such explorations, you ain't goin' NOWHERE.

The death of NASA would be the best thing that could happen to the future of space exploration. The agency ought to be broken up and its military role doled out to the appropriate branches of service.

Then, the government ought to tell the afforementioned mega-big-spenders that if they can figure out a way to get there and bring back the stuff, the gov. will supply SEED MONEY, maybe some rocket boosters, whatever.

Then, let the Invisible Hand take its course, as it inevitably did.

Where do I get this idea? Simple. From HISTORY.

Best Example: We tend to think of Columbus as having "discovered" America. Of course we all know he wasn't the first non-"Native American" to get there. But he is credited with it because HIS was the expedition that mattered.

How did he come to make the voyage? Again, it's simple: Greed, a.k.a. Adam Smith and "The Wealth of Nations" and all that jive.

You see, people who knew anything knew the world was round, of course, they had known it since Greek Antiquity. But they didn't realize it was as BIG as it turned out to be (even though Euclid estimated the true circumference of the Earth to a pretty good degree of accuracy).

They thought that all those reports of sightings of land on the other side of the Atlantic were of the EASTERN coastline of Asia. And Asia was a HOT, HOT market just then, because of the Spice trade. The Italian city states, particularly Genoa and Venice, had a monopoly on the overland spice routs to the Orient, and they sold their precious spices, which European cookery had decided it could not do without once tried, at a VERY hefty price.

So Spain, feeling left out, and desiring to make a splash now that they were solidly back in the mainstream of Christian Europe with the expulsion of the Moors, wanted to find an alternate route to the centers of spice production.

So in reality that was what Columbus was after: An alternate route to "the Indies", to "Cathay" and to the fabulous--and lucrative--Orient.

Cutting to the chase, we all know that they didn't get what they were after. But of course, they also got wealth of another kind in terms of precious metals and interesting crops and other foodstuffs, far in excess of what the Spice Trade would have meant.

Within a few years Spain became a European--and the first WORLD--power, whose hegemony would last, even counting its declining years, for almost four hundred years.

If you will do some checking, you will learn that no significant exploration of the unknown has ever occurred JUST "to see what was there." There was ALWAYS an economic incentive that served as the catalyst.

So, until you space-nerds figure out how to bring a SIGNIFICANT economic incentive into play, no one in the world is EVER going anywhere in space, because it will always be a case of a venture that CONSUMES capital rather than creates it.

Off the soap-box, now.

4 posted on 11/07/2001 3:34:08 PM PST by Illbay
[ Post Reply | Private Reply | To 1 | View Replies]

To: Illbay
Looks like we have to develop some kind of flowchart. Right here we have 3 out of 3 different approaches to the problem. Maybe Laurel there can rough out a decision matrix for us. For sure NASA won't.
5 posted on 11/07/2001 3:51:04 PM PST by RightWhale
[ Post Reply | Private Reply | To 4 | View Replies]

To: RightWhale
As I have said before:

... New propulsion technologies are the key to interstellar travel. In order to perform meaningful exlporation beyond our solar system, we need radical new means of propulsion. Right now, we can barely travel in space at tiny fractions of 1% of the speed of light. Roundtrips to and from the nearest stars will take many hundreds of years. At that rate, everyone on earth who would care would be dead before a mission returned. Even at the speed of light, the nearest stars are years away, let alone other galaxies.

In essence, mankind is completely stranded on Earth (or at least in our solar sytem), until we can travel at many times the speed of light, without high energy (i.e. fuel, weight) costs. This will require a completely new physics.

The cost of ths effort is currently very small. I see keep at it - if we really want to explore beyond planet Earth.

6 posted on 11/07/2001 3:56:05 PM PST by Earl B.
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
I still say we screwed ourselves with the cancellation of the Nerva program. Highest Isp ever achieved for a rocket engine. Far out performed any chemical rocket system ever proposed.
7 posted on 11/07/2001 4:10:49 PM PST by RadioAstronomer
[ Post Reply | Private Reply | To 1 | View Replies]

To: Earl B.
until we can travel at many times the speed of light, without high energy (i.e. fuel, weight) costs. This will require a completely new physics.

Can't we just tweak a constant here and there?

8 posted on 11/07/2001 4:14:17 PM PST by RightWhale
[ Post Reply | Private Reply | To 6 | View Replies]

To: RightWhale
The problem is specific power. Rocket engines (chemical) have the highest specific power (power per pound) of any propulsion system. The key is that chemicals store energy very efficiently, i.e., at high density. No other storage form comes close.

[Suppose human history had been different and we had invented/discovered electricity and other forms of energy before combustion. The invention of combustion--chemical sources--would have been heralded as the greatest advance ever! A pre-combustion, pre-chemical world would have no aircraft (i.e., commercial airliners, jet fighters), no mechanical transportation, etc. But trains run on electricity! someone shouts. Yes, and where does the electricity come from?...]

Which is why battery-powered cars are jokes, unless "assisted" with a gas engine.

Which is why electric rockets have millinewtons of thrust.

A rough rule-of-thumb is that it takes about 20 kilowatts to generate one pound of thrust. Do the calculation for the Space shuttle; each SSME engine is putting out something like six megawatts and weighs only 7000 lb. The solids are even better in specific power.

The key to the solar system could be the nuclear thermal rocket. It alone has both high thrust (meaning short trip times) and good performance (Isp ~900 seconds). A Nuclear Light Bulb would be even better. Not in my lifetime, I'm afraid.

I told my boss: "If we were really serious about busting up the gravity well and getting off the planet, we would stop developing rockets [I'm a rocket guy]. We'd use the ones we have, and put all of our resources into building a space elevator (see Clarke's Fountains of Paradise or Hogan's Web Between the Worlds)."

People easily and glibly talk about "fields", electromagnetic phenomena, antigravity. Show me one that works and gives more than a mouse fart in terms of thrust.

A few years ago, NASA's Lewis Research Center found that it had a spare $50K at the end of the fiscal year. They used it to announce a contest: Fifty grand for the first truly new propulsion system that also worked.

They got lots of entries. Some were truly new and didn't work; some worked and were not truly new.

The prize was never awarded to anyone.

As I remarked to Marc Millis (NASA's "Breakthrough Propulsion" guy), "If these schemes were feasible, the extraterrestrials would have reduced them to practise millennia ago. We would observe their traffic. Hence none of these schemes are feasible--or we are alone." A variant of the Fermi Paradox, I know.

He was unable to form an intelligible response at the time.

--Boris

9 posted on 11/07/2001 5:02:33 PM PST by boris
[ Post Reply | Private Reply | To 1 | View Replies]

To: boris

Project Orion: Its Life, Death, and Possible Rebirth

An essay submitted for the Robert H. Goddard Historical Essay Contest

November 24th, 1992

Copyright (c) 1993 Michael R. Flora (root@isaac.msfc.nasa.gov)

The race to the moon, in the forms of Project Apollo and the still-shadowy Soviet lunarprogram, dominated manned space flight during the decade of the 1960’s. In the United States, the project sequence Mercury-Gemini-Apollo succeeded in putting roughly sixty people into space, twelve of them on the moon. Yet, during the late 1950’s and early 1960’s, the U.S. government sponsored a project that could possibly have placed 150 people, most of them professional scientists, on the moon, and could even have sent expeditions to Mars and Saturn. This feat could conceivably have been accomplished during the same period of time as Apollo, and possibly for about the same amount of money. The code name of the project was Orion, and the concepts developed during its seven-year life are so good that they deserve serious consideration today.

Project Orion was a space vehicle propulsion system that depended on exploding atomic bombs roughly two hundred feet behind the vehicle (1). The seeming absurdity of this idea is one of the reasons why Orion failed; yet, many prominent physicists worked on the concept and were convinced that it could be made practical. Since atomic bombs are discrete entities, the system had to operate in a pulsed rather than a continuous mode. It is similar in this respect to an automobile engine, in which the peak combustion temperatures far exceed the melting points of the cylinders and pistons. The engine remains intact because the period of peak temperature is brief compared to the combustion cycle period.

The idea of an “atomic drive” was a science-fiction cliche by the 1930’s, but it appears that Stanislaw Ulam and Frederick de Hoffman conducted the first serious investigation of atomic propulsion for space flight in 1944, while they were working on the Manhattan Project (2). During the quarter-century following World War II, the U.S. Atomic Energy Commission (replaced by the Department of Energy in 1974) worked with various federal agencies on a series of nuclear engine projects with names like Dumbo, Kiwi, and Pluto, culminating in NERVA (Nuclear Engine for Rocket Vehicle Application) (3). Close to producing a flight prototype, NERVA was cancelled in 1972 (4). The basic idea behind all these engines was to heat a working fluid by pumping it through a nuclear reactor, then allowing it to expand through a nozzle to develop thrust. Although this sounds simple the engineering problems were horrendous. How good were these designs? A useful figure for comparing rocket engines is specific impulse (Isp), defined as pounds of thrust produced per pound of propellant consumed per second. The units of Isp are thus seconds. The best chemical rocket in service, the cryogenic hydrogen-oxygen engine, has an Isp of about 450 seconds (5). NERVA had an Isp roughly twice as great (6), a surprisingly small figure considering that nuclear fission fuel contains more than a million times as much energy per unit mass as chemical fuel. A major problem is that the reactor operates at a constant temperature, and this temperature must be less than the melting point of its structural materials, about 3000 K (7).

A number of designs were proposed in the late 1940’s and 1950’s to get around the temperature limitation and to exploit the enormous power of the atomic bomb, estimated to be on the order of 10 billion horsepower for a moderate-sized device (8). The Martin Company designed a nuclear pulse rocket engine with a “combustion chamber” 130 feet in diameter. Small atomic bombs with yields under 0.1 kiloton (a kiloton is the energy equivalent of 1000 tons of the high explosive TNT) would have been dropped into this chamber at a rate of about one per second (9); water would have been injected to serve as propellant. This design produced the relatively small Isp of 1150 seconds, and could have yielded a maximum velocity change for the vehicle of 26,000 feet/second. The vehicle would have been boosted to an altitude of 150 miles by chemical rockets, and the extra 8000 ft/sec or so thus provided would have allowed it to escape the Earth’s gravity (10). The Lawrence Livermore Laboratory produced a similar although much smaller design called Helios at about the same time (11).

In a classified 1955 paper (12), Stanislaw Ulam and Cornelius Everett eliminated the combustion chamber entirely. Instead, bombs would be ejected backwards from the vehicle, followed by solid-propellant disks. The explosions would vaporize the disks, and the resulting plasma would impinge upon a pusher plate. The advantage of this system is that no attempt is made to confine the explosions, implying that relatively high-yield (hence high-power) bombs may be used. Such a system is neither temperature- nor power-limited. Ulam may have been influenced by experiments conducted at the Eniwetok proving grounds, where graphite-covered steel spheres were suspended thirty feet from the center of an atomic explosion. The spheres were later found intact; a thin layer of graphite had been ablated from their surfaces (13).

Project Orion was born in 1958 at General Atomics in San Diego. The company, now a subsidiary of defense giant General Dynamics, was founded by Frederick de Hoffman to develop commercial nuclear reactors. The driving force behind Orion was Theodore Taylor, a veteran of the Los Alamos weapons programs. De Hoffman persuaded Freeman Dyson, a theoretical physicist then at the Institute for Advanced Study in Princeton, New Jersey, to come to San Diego to work on Orion during the 1958-1959 academic year. Dyson says that Taylor adopted a specific management model for the project: the Verein fur Raumschiffahrt (VfR), the German rocket society of the 1920’s and 1930’s which numbered among its members Werner von Braun. The VfR had little structure: no bureaucracy and essentially no division of labor between its members; it accomplished much before it was taken over by the German army. Orion at first was similar: scientists did practical engineering and engineers built working scale models, all on a shoestring budget (14).

Taylor’s specialty at Los Alamos had been the effects of atomic weapons. He was an expert at making small bombs at a time when the drive was toward ever-bigger superweapons. He was also aware of techniques for shaping explosions, for making bomb debris squirt in one particular direction. Taylor adopted Ulam’s pusher-plate idea but instead of the propellant disks he combined propellant and bomb into a single pulse unit. The propellant material of choice was plastic, probably polyethylene (15). Plastic is good at absorbing the neutrons emitted by an atomic explosion (i.e. it couples well with the prompt radiation energy) and in addition it breaks down into low-weight atoms such as hydrogen and carbon which move at high speeds when agitated. There are indications that a plastic similar to Styrofoam is used inside hydrogen bombs to “channel” the energy from the atomic trigger into the fusible material (16). The advantage of the pusher plate design, as Taylor and Dyson saw it, was that it could simultaneously produce high thrust with high exhaust velocity. No other known propulsion system combined these two highly desirable features. The effective Isp could theoretically be as high as 10,000 to one million seconds (17). The calculated force exerted on the pusher plate was immense; it would have created intolerable acceleration for a manned vehicle. Therefore, a shock absorber system was placed between the plate and the vehicle itself. The impulse energy delivered to the plate was stored in the shock absorbers and released gradually to the vehicle.

The Orion workers built a series of models, called Put-Puts or Hot Rods, to test whether or not pusher plates made of aluminum could survive the momentary intense temperatures and pressures created by chemical explosives. Several models were destroyed, but a 100-meter flight in November 1959, propelled by six charges, was successful and demonstrated that impulsive flight could be stable (18). These experiments also proved that the plate should be thick in the middle and taper toward its edges for maximum strength with minimum weight (19).

The durability of the plate was a major issue. The expanding plasma bubble of each explosion could have a temperature of several tens of thousands of Kelvins even when the explosion occurred hundreds of feet from the plate. Following the lead of the Eniwetok tests, a scheme was devised to spray grease (probably graphite-based) onto the plate between blasts (20). It is not known if this scheme was retained in later versions of the Orion design. Extensive work was done on plate erosion using an explosive-driven helium plasma generator. The experimenters found that the plate would be exposed to extreme temperatures for only about one millisecond during each explosion, and that the ablation would occur only within a thin surface layer of the plate (21). The duration of high temperatures was so short that very little heat flowed into the plate; active cooling was apparently considered unnecessary. The experimenters concluded that either aluminum or steel would be durable enough to act as plate material.

The Orion workers realized early that the U.S. government had to become involved if the project was to have any chance of progressing beyond the tinkering stage. Accordingly, the Advanced Research Projects Agency (ARPA - later DARPA with “D” standing for “Defense”) was approached in April 1958. In July, it agreed to sponsor the project at an initial funding level of $1 million per year; it was at this time that the code name of Orion was assigned (22). Work proceeded under ARPA order 6, task 3, entitled “Study of Nuclear-Pulse-Propelled Space Vehicles” (23).

Taylor and Dyson were convinced that the approach to space flight being pursued by NASA (which had just been created in January 1958) was the wrong one. Von Braun’s chemical rockets in their opinion were very expensive, had very limited payloads, and were essentially useless for flights beyond the moon (24). The Orion workers wanted a spaceship that was simple, rugged, capacious, and above all affordable. Taylor originally called for a ground launch, probably from the U.S. nuclear test site at Jackass Flats, Nevada (25). The vehicle has been described as looking like a bishop’s miter or the tip of a bullet, sixteen stories high and with a pusher plate 135 feet in diameter (26). Intuitively it seems that the bigger the pusher plate, the more efficiently the system would perform. For a derivation of a formula for the effective specific impulse of a nuclear-pulse rocket and for the relations between pusher plate diameter, pulse energy, and Isp, the reader should consult Reynolds (27). The launch pad would have been composed of eight towers, each 250 feet high. The mass of the vehicle on takeoff would have been on the order of 10,000 TONS (28); most of this mass would have gone into orbit. The bomb units ejected on takeoff would have yielded 0.1 kiloton; initially the ejection rate would have been one per second. As the vehicle accelerated the rate would slow down and the yield would increase until 20-kiloton bombs would have been going off every ten seconds (29). The idea seems to have been for the vehicle to fly straight up until it cleared the atmosphere so as to minimize radioactive contamination.

At a time when the U.S. was struggling to put a single man into orbit aboard a modified military rocket, Taylor and Dyson were developing plans for a manned voyage of exploration through much of the solar system. The original Orion design called for 2000 pulse units, far more than enough to attain Earth escape velocity. “Our motto was ‘Mars by 1965, Saturn by 1970’”, recalls Dyson (30). Orion would have been more akin to the rocket ships of science fiction than to the cramped capsules of Gagarin and Glenn. One hundred and fifty people could have lived aboard in relative comfort; the useful payload would have been measured in thousands of tons (31). Orion would have been built like a battleship, with no need for the excruciating weight-saving measures adopted by chemically-propelled spacecraft. It is unclear how the vehicle would have landed; it is reasonable to assume that specialized chemically-powered craft would have been used for exploration. Taylor may have anticipated that a conventional Space Shuttle-type vehicle would have been available to transport people to and from orbit. Dyson gives the astounding figure of $100 million per year as the cost of the proposed twelve-year program (32); surely this does not include development costs for the thousands of items from spacesuits to scientific instruments that such a program would require. The Orion program would have most likely “piggybacked” on the military weapons programs and the existing civilian space projects. Still, even if Dyson underestimated the cost by a factor of 20, the revised total would have been only $24 billion, roughly the same as the accepted cost for the Apollo program.

The times were changing, however. The fledgling space administration began to acquire all civil-oriented space projects run by the federal government; the Air Force got all projects with military applications. ARPA was left with Orion as its only space project, for two reasons. The Air Force felt that Orion had no value as a weapon, and NASA had made a strategic decision in 1959 that the civilian space program would be non-nuclear for the near future (33). NASA was and is a very publicity-conscious organization, and it is hard to overcome the negative perception of atomic devices of any kind on the part of the public. In addition, NASA was filled with engineers who had spent their careers building ever-larger chemical rockets and either did not understand or were openly opposed to nuclear flight. In this situation the Orion workers were truly outsiders.

A crisis came in late 1959, when ARPA decided it could no longer support Orion on national-security grounds. Taylor had no choice but to approach the Air Force for funds. It was a hard sell. A common reaction from both military and civilian officials is displayed by the quote: “...you set off one big bomb and the whole shebang blows up.”(34) The Air Force finally decided to take on Orion, but only on the condition that a military use be found for it. Dyson says that his Air Force contacts, although sympathetic to the goal of space exploration, felt that their hands were tied (35). One immediate result of the change of management was that all model flight testing was stopped (36). The freewheeling era was over; Taylor’s dream of a company of “men of goodwill” exploring the solar system had died.

One can imagine that Orion could be used as a weapon platform, in a polar orbit so that it would eventually pass over every point on the Earth’s surface. It could also protect itself easily, at least against attacks by small numbers of missiles. However, this idea has the same disadvantages as the early bomb-carrying satellite proposals. Terminal guidance would have been a problem (assuming that hardened, high-value installations were the intended targets), since the technology for steering missile warheads accurately had not yet been developed. Both the U.S. and the Soviet Union were deploying missiles that were capable of reaching their targets in fifteen minutes with multi-megaton warheads, making orbiting bomb platforms irrelevant.

Robert McNamara, Defense Secretary under the Kennedy Administration, realized that Orion was not a military asset. His department consistently rejected any increase in funding for the project, effectively limiting it to a feasibility study (37). Taylor and Dyson knew that another money source had to be found if a flyable vehicle was to be built. NASA was the only remaining option. Accordingly, Taylor and James Nance, a General Atomics employee and later director of the project, made at least two trips to Marshall Space Flight Center (MSFC) in Huntsville, Alabama (38). MSFC was von Braun’s domain and it was where most of NASA’s space propulsion research and development took place. Von Braun was hard at work on the Saturn project, which NASA had inherited from the old Army Ballistic Missile Agency. The Saturn V would eventually transport men to the moon. The Orion workers had produced a new, “first generation” design that abandoned ground launch and instead would have been boosted into orbit as a Saturn V upper stage. The core of the vehicle was a 200,000-pound “propulsion module” with a pusher-plate diameter of 33 feet, limited by the diameter of the Saturn. This design limitation also restricted Isp to from 1800 to 2500 seconds (39). While disappointingly low by nuclear-pulse standards, this figure still far exceeded those of other nuclear rocket designs. The shock absorber system had two sections: a primary unit made up of toroidal pneumatic bags located directly behind the pusher plate, and a secondary unit of four telescoping shocks (like those on a car) connecting the pusher plate assembly to the rest of the spacecraft (40).

How many Saturn V’s would have been required to put this vehicle into orbit? Dyson says one or two (41); a simple inspection of published drawings indicates at least two, possibly three if the crew module (with crew aboard) was intended to be flown separately (42). In this case, some assembly would have been done on-orbit. Several mission profiles were contemplated; the one developed in greatest detail appears to have been a Mars flight. Eight astronauts, with around 100 tons of equipment and supplies, could have made a round trip to Mars in 125 days (43); most modern plans call for one-way times of at least nine months. Another impressive figure is that as much as 45% of the gross vehicle weight in Earth orbit could have been payload (44). Presumably the flight would have been made when Mars was nearest to the Earth; still, so much energy was available that almost the fastest-possible path between the planets could have been chosen. Inspection of the drawings indicates that a lander may also have been carried.

What about the cost? Pedersen’s 1964 estimate of $1.5 billion for the project (45) suggests the superior economics of nuclear pulse spaceships. Dyson felt that Orion’s appeal was greatly diluted by the chemical booster restriction: the Saturns would have represented over 50% of the total cost (46).

Von Braun became an enthusiastic Orion supporter, but he was able to make little headway among higher-level administration officials. In addition to the general injunction against nuclear power, very practical objections were raised: what if a Saturn bearing a propulsion module with hundreds of bombs aboard should explode? Was it possible to guarantee that not a single bomb would explode or even rupture? NASA’s understandable fear of a public-relations disaster contributed to its reluctance to provide money (47); however, its Office of Manned Spaceflight was sufficiently interested to fund another study (48).

A hammer blow was delivered in August 1963 with the signing of the nuclear test-ban treaty by the U.S., U.K., and U.S.S.R. Orion was now illegal under international law. Yet the project did not die immediately. It was still possible that an exemption could be granted for programs that were demonstrably peaceful. Surely the treaty reduced Orion’s political capital even further, though. Yet another problem was that, because Orion was a classified project, very few people in the engineering and scientific communities were aware of its existence. In an attempt to rectify this, Nance (now managing the project) lobbied the Air Force to declassify at least the broad outline of the work that had been done. Eventually it agreed, and Nance published a brief description of the “first generation” vehicle in October 1964 (49).

The Air Force, meanwhile, had become impatient with NASA’s temporizing. It was willing to be a partner but only if NASA would contribute significant funds. Hard-pressed by the demands of Apollo, NASA made its decision in December 1964 and announced it publicly the following month: no money would be forthcoming (50). The Air Force then anounced the termination of all funding, and Orion quietly died. Some $11 million had been spent over nearly seven years (51).

Overshadowed by the moon race, Orion was forgotten by almost everybody except Freeman Dyson and Theodore Taylor. Dyson in particular seems to have been deeply affected by his experience.

The story of Orion is important, he says, “...because this is the first time in modern history that a major expansion of human technology has been suppressed for political reasons”(52). His 1968 paper (53) gives more physical details of nuclear pulse drives, and even suggests extremely large starships powered by fusion explosions. Ultimately he became disillusioned with the concept, primarily because of the radiation hazard associated with the early ground-launch idea. Yet he says that the most extensive flight program envisaged by Taylor and himself would have added no more than 1% to the atmospheric contamination then (circa 1960) being created by the weapons-testing of the major powers (54).

Does it make any sense to even think of reviving the nuclear-pulse concept? Economically the answer is yes. Pedersen (55) says that 10,000-ton spaceships with 10,000-ton payloads are feasible. Spaceships like this could be relatively cheap compared to Shuttle-like vehicles due to their heavyweight construction. One tends to think of shipyards with heavy plates being lowered into place by cranes. How much would the pulse units cost? Pedersen gives the amazingly low figure of $10,000 to $40,000 per unit for the early Martin design (56); there is reason to think that $1 million is an upper limit (57). Primarily from strength of materials considerations, Dyson (58) argues that 30 meters/second (about 100 feet/second) is the maximum velocity increment that could be obtained from a single pulse. Given that low-altitude orbital velocity is about 26,000 feet/second, around 350 pulses would be required (59). Using $500,000 as a reasonable pulse-unit cost, this implies a “fuel cost” of $175 million, cheaper than a Shuttle launch. Whereas the Shuttle might carry thirty tons of payload, the pulse vehicle would carry thousands. If one uses the extreme example of spending $5 billion to build a vehicle to lift 10,000 tons (or 20 million pounds) to orbit, the cost if spread over a single flight is $250 per pound, far cheaper than the accepted figure of $5,000 to $6,000 per pound for a Shuttle flight.

Efficiency improvements could be made by improving the design of the pulse units. Considerable progress has been made in nuclear bomb design over the past thirty years. Neutron bombs, for instance, demonstrate that it is possible to change the form of the energy emitted by the explosion. Recent work on X-ray lasers bears on the important problem of shaping the explosion into a beam. Yet it is impossible to prevent the formation of radioactive fission fragments. For a ground launch, choosing a very remote site such as a floating platform in the extreme southern Atlantic or Pacific would minimize the radiation hazard to humans. The chemical-rocket imperative to launch as close to the equator as possible disappears when such an abundance of energy is available. Even this might be judged environmentally unacceptable, though; perhaps ANY release of radiation into the atmosphere is wrong. In this case the option of a space launch remains open. Even this has been criticized on the grounds that it would leave a radioactive debris trail in space. However, interplanetary space is a very dangerous environment to begin with, being periodically saturated with fast charged particles from solar flares and with extremely energetic cosmic rays occasionally blasting through. The notion that the bomb debris would form a trail is challenged by the fact that the velocity of most of the debris would exceed solar escape velocity (60).

Although the Saturn V no longer exists, U.S. engineers are currently studying several heavy-lift systems. Given the recent reduction in world tensions, even the Russian Energia could be considered. Russian nuclear scientists, unemployed after the Cold War, might collaborate with Americans on nuclear-pulse space projects. Fast flights to the planets might be made in ten years or less, at reasonable expense, instead of thirty to fifty years.

Unfortunately, the Orion concept is inherently “dirty” because it uses fission fuel. It is also inefficient; this is acceptable only because of the vast amounts of energy available. A much better alternative is fusion, since a fusion rocket would not leave a wake of heavy radioactive ions. The British Interplanetary Society’s Daedalus project (61) was a study of an unmanned interstellar probe. It would have been driven by fusion “microexplosions” caused by irradiating fuel pellets with electron beams at pulse rates up to 250 Hz, in a magnetic “combustion chamber". Confinement and shaping of the plasma with a magnetic field would make Daedalus vastly more efficient than Orion. Daedalus would work just as well in the solar system as between the stars, and one can imagine that in 75 to 100 years fusion freighters will be sailing regularly between the planets. An important point is that no one has yet produced controlled fusion energy with electron beams or anything else, while the technology required to build an Orion-type spaceship has existed for over thirty years. Nuclear propulsion will get into space eventually. Orion might be the device that makes possible human occupation and economic exploitation of the solar system.

Notes

1. Erik S. Pedersen, Nuclear Propulsion in Space (Englewood Cliffs, NJ: Prentice-Hall Inc.,1964), p. 275.

2. William R. Corliss, Nuclear Propulsion for Space (U.S. Atomic Energy Commission: Division of Technical Information, 1967), p. 11.

3. Corliss, pp. 1-16.

4. James A. Dewar, “Project Rover: The United States Nuclear Rocket Program”, in History of Rocketry and Astronautics (John L. Sloop ed. - San Diego: American Astronautical Society Publications Office, 1991), p. 123.

5. “Specific impulse”, article in McGraw-Hill Encyclopedia of Science and Technology, vol. 17, p. 204.

6. “Specific Impulse”, p. 204

7. Corliss, pp. 13-14.

8. Pedersen (p. 276) gives 4.2 x 1019 ergs per kiloton; exploding one such bomb per second yields 4.2 x 1012 joules / sec (i.e. watts) or roughly 5 billion average horsepower.

9. Pedersen, p. 276.

10. Pedersen, p. 276.

11. Eugene Mallove and Gregory Matloff, The Starflight Handbook (New York: John Wiley and Sons, 1989), p. 60.

12. Mallove and Matloff, p. 61.

13. John McPhee, The Curve of Binding Energy (New York: Farrar, Straus and Giroux, 1974), pp. 167-168

14. Freeman Dyson, Disturbing the Universe (New York: Harper and Row, 1979), pp. 109-110.

15. Mallove and Matloff, p. 63.

16. The Ground Zero Fund, Inc., Nuclear War: What’s In It for You? (New York: Simon and Schuster Inc., 1977), p. 27.

17. Mallove and Matloff, pp. 60-61.

18. Dyson, Disturbing, p. 113

19. McPhee, p. 175.

20. McPhee, p. 175

21. J.C. Nance, “Nuclear Pulse Propulsion”, IEEE Transactions on Nuclear Science (Feb. 1965), p. 177.

22. McPhee, p. 170.

23. DARPA letter to the author dated October 7th, 1992.

24. Dyson, Disturbing, pp. 109-110.

25. McPhee, pp. 173-174.

26. McPhee, pp. 173-174.

27. T.W. Reynolds, “Effective Specific Impulse of External Nuclear Pulse Propulsion Systems”, Journal of Spacecraft and Rockets 10 (Oct. 1973), pp. 629-630

28. The volume of a cone 200 feet high with a base diameter of 135 feet (the approximate dimensions of the proposed Orion vehicle) is about 1.5 million cubic feet. If the average density is 10 pounds per cubic foot (about 1/6 that of water) the weight is 15 million pounds or 7500 tons.

29. McPhee, pp. 173-174.

30. McPhee, pp. 180-181.

31. McPhee, p. 158.

32. Dyson, Disturbing, p. 111.

33. Dyson, Disturbing, p. 113.

34. Nance, p. 177.

35. Freeman Dyson, “Death of a Project”, Science (9 July 1965), pp. 141-144.

36. Dyson, Disturbing, p. 113.

37. Dyson, “Death”, p. 142.

38. McPhee (p. 183) says that Taylor traveled to MSFC in 1961; Dyson (“Death”, p. 142) says that Taylor and Nance established relations with MSFC management in 1963.

39. Nance, pp. 181-182.

40. Nance, p. 182.

41. Dyson, Disturbing, p. 115.

42. Nance, p. 182.

43. Dyson, “Death”, pp. 141-142.

44. Nance, p. 179.

45. Pedersen, p. 276.

46. Dyson, “Death”, pp. 141-142.

47. Dyson, “Death”, pp. 143-144.

48. Dyson, “Death”, pp. 143-144.

49. Dyson, “Death”, pp. 143-144.

50. Dyson, “Death”, p. 142.

51. Dyson, “Death”, p. 144.

52. Mallove and Matloff, p. 61.

53. Freeman Dyson, “Interstellar Transport”, Physics Today (Oct. 1968), pp. 41-45.

54. Dyson, Disturbing, p. 114.

55. Pedersen, p. 275.

56. Pedersen, p. 276.

57. Kenneth A Bertsch and Linda S. Shaw, The Nuclear Weapons Industry (Washington D.C.: Investor Responsibility Research Center, 1984), on p. 55 state that warheads for 560 ground-launched cruise missiles were expected to cost $630 million. Not only were these military weapons but they were quite likely fusion devices as well and so would be significantly more expensive than simple fission bombs.

58. The figure of 350 pulses was arrived at as follows: if the net acceleration during the initial vertical phase is about 2 g’s, about 100 pulses are required to reach an altitude of 60 miles (at an average of one pulse per second). The velocity at this height is about 6400 ft/sec. If the spaceship then performs an attitude correction and accelerates to orbital velocity at about 3 g’s, roughly 260 pulses are required, at which time the altitude is roughly 300 miles. This is a very crude estimate and the actual number of pulses might be much lower.

59. Dyson, “Interstellar”, p. 44.

60. McPhee, pp. 167-168.

61. British Interplanetary Society, Project Daedalus (London: British Interplanetary Society Ltd., 1981).

References

Bertsch, Kenneth A. and Shaw, Linda S. The Nuclear Weapons Industry (Washington D.C.: Investor Responsibility Research Center, 1984)

British Interplanetary Society, Dr. A.R. Martin ed. Project Daedalus (London: British Interplanetary Society Ltd., 1981)

Corliss, William R. Nuclear Propulsion for Space (U.S. Atomic Energy Commission: Department of Technical Information, 1967)

Dewar, James A. “Project Rover: The United States Nuclear Rocket Program”, in History of Rocketry and Astronautics, John L Sloop ed. (San Diego: American Astronautical Society Publications Office, 1991)

Dyson, Freeman “Death of a Project”, Science 9 July 1965

___. Disturbing the Universe (New York: Harper and Row, 1979)

___. “Interstellar Transport”, Physics Today October 1968

Ground Zero Fund Inc., The Nuclear War: What’s In It for You? (New York: Simon and Schuster Inc., 1977)

Letter from Defense Advanced Research Projects Agency to the author, dated October 7th, 1992

Mauldin, John Prospects for Interstellar Travel (San Diego: American Astronautical Society Publications Office, 1992)

McPhee, John. The Curve of Binding Energy (New York: Farrar, Straus and Giroux, 1974)

Pedersen, Erik S. Nuclear Propulsion in Space (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1964)

Reynolds, T.W. “Effective Specific Impulse of External Nuclear Pulse Propulsion Systems”, Journal of Spacecraft and Rockets (10 October 1973)

“Specific Impulse”, article in The McGraw-Hill Encyclopedia of Science and Technology, 6th ed., vol. 17 (New York: McGraw-Hill Inc., 1987)

10 posted on 11/07/2001 5:08:50 PM PST by Oleg Panczenko
[ Post Reply | Private Reply | To 9 | View Replies]

To: RightWhale
"or accelerate us to 0.1c..."

It turns out that one gee (1 g) is 1.03 light-years per year**2.

You accelerate at one gee for a year and (ignoring Einstein) you will be up near "c" and about 1/2 lightyear from Sol.

Consider a kilogram so accelerated. Its kinetic energy (classically, not relativistically) is 4.89x10**17 joules. A year is roughly pi times ten to the seventh power seconds. Hence the propulsive power that must be applied to the kilogram for a year is about 1500 megawatts. Call it two San Onofre nuclear power plants running full-tilt for a year. If our kilogram is going to have a useful payload and structure (i.e., non propulsion elements) the propulsion system must weigh much less than a kilogram. I'll give you 100 grams and 100 cubic centimeters. So the problem of interstellar flight is reduced to the problem of condensing two giant nuclear generating stations in to a volume of roughly a handful of sugar cubes. Scale up as needed until you get the "Enterprise".

The problem is that humans are too puny to deal in the sorts of energies we need. Sometimes I think of the problem like this: compress the Sun into an average sized office building and harness its power.

I have some questions I'm saving up for the Almighty:

1. Why did You put everything so bleeping far apart?
2. Why did You make us so short lived?

Looking at the way the universe is designed, it almost seems to have been deliberately arranged to prevent interstellar travel and interactions between (presumed) intelligent species...

--Boris

11 posted on 11/07/2001 5:13:18 PM PST by boris
[ Post Reply | Private Reply | To 1 | View Replies]

To: Illbay
If you will do some checking, you will learn that no significant exploration of the unknown has ever occurred JUST "to see what was there." There was ALWAYS an economic incentive that served as the catalyst.

--------------------------

Tell us all bout those economic incentives that men had from 12 to 50,000 years ago to explore north america. Or to go to australia, even earlier.

- You don't have a clue. Just a big fat opinion, of your own opinions.

12 posted on 11/07/2001 5:21:06 PM PST by tpaine
[ Post Reply | Private Reply | To 4 | View Replies]

To: boris
I thought that we tested the Nerva type rocket engines in the 60s and they were far superior to the chemical ones.
13 posted on 11/07/2001 5:35:27 PM PST by RadioAstronomer
[ Post Reply | Private Reply | To 9 | View Replies]

To: RadioAstronomer
The history of nuclear propulsion is one of the most frustrating stories of the space age. Nuclear thermal was a modest but workable idea. The other concepts like project Orion and gas-core nuclear propulsion would've made the entire solar system our playground. We've already figured out how to transverse interplanetary distances with relative ease but dangblasted politics has denied us our manifest destiny.
14 posted on 11/07/2001 6:23:00 PM PST by Brett66
[ Post Reply | Private Reply | To 13 | View Replies]

To: tpaine
Survival is THE primary economic incentive.

Growth is a close second.
15 posted on 11/07/2001 6:37:44 PM PST by tim politicus
[ Post Reply | Private Reply | To 12 | View Replies]

To: Brett66
I quite agree. I don't think we will see such in our lifetimes!
16 posted on 11/07/2001 6:41:32 PM PST by RadioAstronomer
[ Post Reply | Private Reply | To 14 | View Replies]

Comment #17 Removed by Moderator

To: boris
Tender young shoots need environmental challenges, but their roots and surrounding soil must be relatively undisturbed. Perhaps even actively protected.

But Boris, I think near solar space and inter-solar space is much fuller then currently popular speculation imagines. Some day, utilizing near solar space, we will become a mighty oak. Then the real fun will begin.
18 posted on 11/07/2001 6:49:19 PM PST by tim politicus
[ Post Reply | Private Reply | To 11 | View Replies]

Comment #19 Removed by Moderator

To: LLAN-DDEUSANT
I'm sorry I left the wrong impression. I was being flippant.

Yes, the urge to improve life for future generations was a GOOD thing, not a bad thing.

Didn't mean to imply anything different.

20 posted on 11/07/2001 6:58:06 PM PST by Illbay
[ Post Reply | Private Reply | To 19 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-4041-6061-74 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson