Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

John F. Nash, Jr. – Autobiography
Nobel d-Museum ^ | 1994 | John F. Nash, Jr.

Posted on 12/26/2001 11:39:25 AM PST by E. Pluribus Unum

John F. Nash, Jr. – Autobiography

My beginning as a legally recognized individual occurred on June 13, 1928 in Bluefield, West Virginia, in the Bluefield Sanatarium, a hospital that no longer exists. Of course I can't consciously remember anything from the first two or three years of my life after birth. (And, also, one suspects, psychologically, that the earliest memories have become "memories of memories" and are comparable to traditional folk tales passed on by tellers and listeners from generation to generation.) But facts are available when direct memory fails for many circumstances.

My father, for whom I was named, was an electrical engineer and had come to Bluefield to work for the electrical utility company there which was and is the Appalachian Electric Power Company. He was a veteran of WW1 and had served in France as a lieutenant in the supply services and consequently had not been in actual front lines combat in the war. He was originally from Texas and had obtained his B. S. degree in electrical engineering from Texas Agricultural and Mechanical (Texas A. and M.).

My mother, originally Margaret Virginia Martin, but called Virginia, was herself also born in Bluefield. She had studied at the University of West Virginia and was a school teacher before her marriage, teaching English and sometimes Latin. But my mother's later life was considerably affected by a partial loss of hearing resulting from a scarlet fever infection that came at the time when she was a student at WVU.

Her parents had come as a couple to Bluefield from their original homes in western North Carolina. Her father, Dr. James Everett Martin, had prepared as a physician at the University of Maryland in Baltimore and came to Bluefield, which was then expanding rapidly in population, to start up his practice. But in his later years Dr. Martin became more of a real estate investor and left actual medical practice. I never saw my grandfather because he had died before I was born but I have good memories of my grandmother and of how she could play the piano at the old house which was located rather centrally in Bluefield.

A sister, Martha, was born about two and a half years later than me on November 16, 1930.

I went to the standard schools in Bluefield but also to a kindergarten before starting in the elementary school level. And my parents provided an encyclopedia, Compton's Pictured Encyclopedia, that I learned at lot from by reading it as a child. And also there were other books available from either our house or the house of the grandparents that were of educational value.

Bluefield, a small city in a comparatively remote geographical location in the Appalachians, was not a community of scholars or of high technology. It was a center of businessmen, lawyers, etc. that owed its existence to the railroad and the rich nearby coal fields of West Virginia and western Virginia. So, from the intellectual viewpoint, it offered the sort of challenge that one had to learn from the world's knowledge rather than from the knowledge of the immediate community.

By the time I was a student in high school I was reading the classic "Men of Mathematics" by E. T. Bell and I remember succeeding in proving the classic Fermat theorem about an integer multiplied by itself p times where p is a prime.

I also did electrical and chemistry experiments at that time. At first, when asked in school to prepare an essay about my career, I prepared one about a career as an electrical engineer like my father. Later, when I actually entered Carnegie Tech. in Pittsburgh I entered as a student with the major of chemical engineering.

Regarding the circumstances of my studies at Carnegie (now Carnegie Mellon U.), I was lucky to be there on a full scholarship, called the George Westinghouse Scholarship. But after one semester as a chem. eng. student I reacted negatively to the regimentation of courses such as mechanical drawing and shifted to chemistry instead. But again, after continuing in chemistry for a while I encountered difficulties with quantitative analysis where it was not a matter of how well one could think and understand or learn facts but of how well one could handle a pipette and perform a titration in the laboratory. Also the mathematics faculty were encouraging me to shift into mathematics as my major and explaining to me that it was not almost impossible to make a good career in America as a mathematician. So I shifted again and became officially a student of mathematics. And in the end I had learned and progressed so much in mathematics that they gave me an M. S. in addition to my B. S. when I graduated.

I should mention that during my last year in the Bluefield schools that my parents had arranged for me to take supplementary math. courses at Bluefield College, which was then a 2-year institution operated by Southern Baptists. I didn't get official advanced standing at Carnegie because of my extra studies but I had advanced knowledge and ability and didn't need to learn much from the first math. courses at Carnegie.

When I graduated I remember that I had been offered fellowships to enter as a graduate student at either Harvard or Princeton. But the Princeton fellowship was somewhat more generous since I had not actually won the Putnam competition and also Princeton seemed more interested in getting me to come there. Prof. A. W. Tucker wrote a letter to me encouraging me to come to Princeton and from the family point of view it seemed attractive that geographically Princeton was much nearer to Bluefield. Thus Princeton became the choice for my graduate study location.

But while I was still at Carnegie I took one elective course in "International Economics" and as a result of that exposure to economic ideas and problems, arrived at the idea that led to the paper "The Bargaining Problem" which was later published in Econometrical. And it was this idea which in turn, when I was a graduate student at Princeton, led to my interest in the game theory studies there which had been stimulated by the work of von Neumann and Morgenstern.

As a graduate student I studied mathematics fairly broadly and I was fortunate enough, besides developing the idea which led to "Non-Cooperative Games", also to make a nice discovery relating to manifolds and real algebraic varieties. So I was prepared actually for the possibility that the game theory work would not be regarded as acceptable as a thesis in the mathematics department and then that I could realize the objective of a Ph. D. thesis with the other results.

But in the event the game theory ideas, which deviated somewhat from the "line" (as if of "political party lines") of von Neumann and Morgenstern's book, were accepted as a thesis for a mathematics Ph. D. and it was later, while I was an instructor at M.I.T., that I wrote up Real Algebraic Manifolds and sent it in for publication.

I went to M.I.T. in the summer of 1951 as a "C.L.E. Moore Instructor". I had been an instructor at Princeton for one year after obtaining my degree in 1950. It seemed desirable more for personal and social reasons than academic ones to accept the higher-paying instructorship at M.I.T.

I was on the mathematics faculty at M.I.T. from 1951 through until I resigned in the spring of 1959. During academic 1956 - 1957 I had an Alfred P. Sloan grant and chose to spend the year as a (temporary) member of the Institute for Advanced Study in Princeton.

During this period of time I managed to solve a classical unsolved problem relating to differential geometry which was also of some interest in relation to the geometric questions arising in general relativity. This was the problem to prove the isometric embeddability of abstract Riemannian manifolds in flat (or "Euclidean") spaces. But this problem, although classical, was not much talked about as an outstanding problem. It was not like, for example, the 4-color conjecture.

So as it happened, as soon as I heard in conversation at M.I.T. about the question of the embeddability being open I began to study it. The first break led to a curious result about the embeddability being realizable in surprisingly low-dimensional ambient spaces provided that one would accept that the embedding would have only limited smoothness. And later, with "heavy analysis", the problem was solved in terms of embeddings with a more proper degree of smoothness.

While I was on my "Sloan sabbatical" at the IAS in Princeton I studied another problem involving partial differential equations which I had learned of as a problem that was unsolved beyond the case of 2 dimensions. Here, although I did succeed in solving the problem, I ran into some bad luck since, without my being sufficiently informed on what other people were doing in the area, it happened that I was working in parallel with Ennio de Giorgi of Pisa, Italy. And de Giorgi was first actually to achieve the ascent of the summit (of the figuratively described problem) at least for the particularly interesting case of "elliptic equations".

It seems conceivable that if either de Giorgi or Nash had failed in the attack on this problem (of a priori estimates of Holder continuity) then that the lone climber reaching the peak would have been recognized with mathematics' Fields medal (which has traditionally been restricted to persons less than 40 years old).

Now I must arrive at the time of my change from scientific rationality of thinking into the delusional thinking characteristic of persons who are psychiatrically diagnosed as "schizophrenic" or "paranoid schizophrenic". But I will not really attempt to describe this long period of time but rather avoid embarrassment by simply omitting to give the details of truly personal type.

While I was on the academic sabbatical of 1956 - 1957 I also entered into marriage. Alicia had graduated as a physics major from M.I.T. where we had met and she had a job in the New York City area in 1956 - 1957. She had been born in El Salvador but came at an early age to the U.S. and she and her parents had long been U.S. citizens, her father being an M. D. and ultimately employed at a hospital operated by the federal government in Maryland.

The mental disturbances originated in the early months of 1959 at a time when Alicia happened to be pregnant. And as a consequence I resigned my position as a faculty member at M.I.T. and, ultimately, after spending 50 days under "observation" at the McLean Hospital, travelled to Europe and attempted to gain status there as a refugee.

I later spent times of the order of five to eight months in hospitals in New Jersey, always on an involuntary basis and always attempting a legal argument for release.

And it did happen that when I had been long enough hospitalized that I would finally renounce my delusional hypotheses and revert to thinking of myself as a human of more conventional circumstances and return to mathematical research. In these interludes of, as it were, enforced rationality, I did succeed in doing some respectable mathematical research. Thus there came about the research for "Le Probleme de Cauchy pour les E'quations Differentielles d'un Fluide Generale"; the idea that Prof. Hironaka called "the Nash blowing-up transformation"; and those of "Arc Structure of Singularities" and "Analyticity of Solutions of Implicit Function Problems with Analytic Data".

But after my return to the dream-like delusional hypotheses in the later 60's I became a person of delusionally influenced thinking but of relatively moderate behavior and thus tended to avoid hospitalization and the direct attention of psychiatrists.

Thus further time passed. Then gradually I began to intellectually reject some of the delusionally influenced lines of thinking which had been characteristic of my orientation. This began, most recognizably, with the rejection of politically-oriented thinking as essentially a hopeless waste of intellectual effort.

So at the present time I seem to be thinking rationally again in the style that is characteristic of scientists. However this is not entirely a matter of joy as if someone returned from physical disability to good physical health. One aspect of this is that rationality of thought imposes a limit on a person's concept of his relation to the cosmos. For example, a non-Zoroastrian could think of Zarathustra as simply a madman who led millions of naive followers to adopt a cult of ritual fire worship. But without his "madness" Zarathustra would necessarily have been only another of the millions or billions of human individuals who have lived and then been forgotten.

Statistically, it would seem improbable that any mathematician or scientist, at the age of 66, would be able through continued research efforts, to add much to his or her previous achievements. However I am still making the effort and it is conceivable that with the gap period of about 25 years of partially deluded thinking providing a sort of vacation my situation may be atypical. Thus I have hopes of being able to achieve something of value through my current studies or with any new ideas that come in the future.

From Les Prix Nobel 1994.



TOPICS: Editorial; News/Current Events
KEYWORDS:
I highly recommend "A Beautiful Mind," the current movie about John F. Nash, Jr., directed by Ron Howard.
1 posted on 12/26/2001 11:39:25 AM PST by E. Pluribus Unum
[ Post Reply | Private Reply | View Replies]

To: E. Pluribus Unum
Outstanding film. Saw it with my parents after Christmas Dinner yesterday.
2 posted on 12/26/2001 11:51:11 AM PST by Clemenza
[ Post Reply | Private Reply | To 1 | View Replies]

To: E. Pluribus Unum
I liked this part:

This began, most recognizably, with the rejection of politically-oriented thinking as essentially a hopeless waste of intellectual effort.
3 posted on 12/26/2001 11:51:33 AM PST by balrog666
[ Post Reply | Private Reply | To 1 | View Replies]

To: E. Pluribus Unum

John F. Nash, 1928-

Photo of J. Nash


When the 21-year old John Nash wrote his 27-page dissertation outlining his "Nash Equilibrium" for strategic non-cooperative games, the impact was enormous. On the formal side, his existence proof was one of the first applications of Kakutani's fixed-point theorem later employed with so much gusto by Neo-Walrasians everywhere; on the conceptual side, he spawned much of the literature on non-cooperative game theory which has since grown at a prodigious rate - threatening, some claim, to overwhelm much of economics itself.

When the young Nash had applied to graduate school at Princeton in 1948, his old Carnegie Tech professor, R.J. Duffin, wrote only one line on his letter of recommendation: "This man is a genius". It was at Princeton that Nash encountered the theory of games, then recently launched by John von Neumann and Oskar Morgenstern. However, they had only managed to solve non-cooperative games in the case of "pure rivalries" (i.e. zero-sum). The young Nash turned to rivalries with mutual gain. His trick was the use of best-response functions and a recent theorem that had just emerged - Kakutani's fixed point-theorem. His main result, the "Nash Equilibrium", was published in 1950 in the Proceedings of the National Academy of Sciences. He followed this up with a paper which introduced yet another solution concept - this time for two-person cooperative games - the "Nash Bargaining Solution" (NBS) in 1950. A 1951 paper attached his name to yet another side of economics - this time, the "Nash Programme", reflecting his methodological call for the reduction of all cooperative games into a non-cooperative framework.

His contributions to mathematics were no less remarkable. As an undergraduate, he had inadvertently (and independently) proved Brouwer's fixed point theorem. Later on, he went on to break one of Riemann's most perplexing mathematical conundrums. From then on, Nash provided breakthrough after breakthrough in mathematics.

In 1958, on the threshold of his career, Nash got struck by paranoid schizophrenia. He lost his job at M.I.T. in 1959 (he had been tenured there in 1958 - at the age of 29) and was virtually incapicated by the disease for the next two decades or so. He roamed about Europe and America, finally, returning to Princeton where he became a sad, ghostly character on the campus - "the Phantom of Fine Hall" as Rebecca Goldstein described him in her novel, Mind-Body Problem.

The disease began to evaporate in the early 1970s and Nash began to gradually to return to his work in mathematics. However, Nash himself associated his madness with his living on an "ultralogical" plane, "breathing air too rare" for most mortals, and if being "cured" meant he could no longer do any original work at that level, then, Nash argued, a remission might not be worthwhile in the end.  As John Dryden once put it:


Great wits are sure to madness near allied,
And thin partitions do their bounds divide.

(John Dryden, Absalom and Achitophel, 1681)

Nash shared the Nobel prize in 1994 with John C. Harsanyi and Reinhard Selten - for what he claims was his "most trivial work"!

Major Works of John F. Nash

Resources on John Nash

 

4 posted on 12/26/2001 11:52:47 AM PST by E. Pluribus Unum
[ Post Reply | Private Reply | To 1 | View Replies]

To: E. Pluribus Unum

John Forbes Nash


Born: 13 June 1928 in Bluefield, West Virginia, USA


Click the picture above
to see two larger pictures


John F Nash's father, also called John Forbes Nash so we shall refer to him as John Nash Senior, was a native of Texas. John Nash Senior was born in 1892 and had an unhappy childhood from which he escaped when he studied electrical engineering at Texas Agricultural and Mechanical. After military service in France during World War I, John Nash Senior lectured on electrical engineering for a year at the University of Texas before joining the Appalacian Power Company in Bluefield, West Virginia. John F Nash's mother, Margaret Virginia Martin, was known as Virginia. She had a university education, studying languages at the Martha Washington College and then at West Virginia University. She was a school teacher for ten years before meeting John Nash Senior, and the two were married on 6 September 1924.

Johnny Nash, as he was called by his family, was born in Bluefield Sanatorium and baptised into the Episcopal Church. He was [2]:-

... a singular little boy, solitary and introverted ...
but he was brought up in a loving family surrounded by close relations who showed him much affection. After a couple of years Johnny had a sister when Martha was born. He seems to have shown a lot of interest in books when he was young but little interest in playing with other children. His mother responded by enthusiastically encouraging Johnny's education, both by seeing that he got good schooling and also by teaching him herself.

Johnny's teachers at school certainly did not recognise his genius, and it would appear that he gave them little reason to realise that he had extraordinary talents. They were more conscious of his lack of social skills and, because of this, labelled him as backward. Although it is easy to be wise after the event, it now would appear that he was extremely bored at school. By the time he was about twelve years old he was showing great interest in carrying out scientific experiments in his room at home. It is fairly clear that he learnt more at home than he did at school.

Martha seems to have been a remarkably normal child while Johnny seemed different from other children. She wrote later in life (see [2]):-

Johnny was always different. [My parents] knew he was different. And they knew he was bright. He always wanted to do thinks his way. Mother insisted I do things for him, that I include him in my friendships. ... but I wasn't too keen on showing off my somewhat odd brother.
Nash first showed an interest in mathematics when he was about 14 years old. Quite how he came to read E T Bell's Men of mathematics is unclear but certainly this book inspired him. He tried, and succeeded, in proving for himself results due to Fermat which Bell stated in his book. The excitement that Nash found here was in contrast to the mathematics that he studied at school which failed to interest him.

He entered Bluefield College in 1941 and there he took mathematics courses as well as science courses, in particular studying chemistry which was a favourite topic. He began to show abilities in mathematics, particularly in problem solving, but still with hardly any friends and behaving in a somewhat eccentric manner, this only added to his fellow pupils view of him as peculiar. He did not considered a career in mathematics at this time, however, which is not surprising since it was an unusual profession. Rather he assumed that he would study electrical engineering and follow his father but he continued to conduct his own chemistry experiments and was involved in making explosives which led to the death of one of his fellow pupils.

Nash won a scholarship in the George Westinghouse Competition and was accepted by the Carnegie Institute of Technology (now Carnegie-Mellon University) which he entered in June 1945 with the intention of taking a degree in chemical engineering. Soon, however, his growing interest in mathematics had him take courses on tensor calculus and relativity. There he came in contact with John Synge who had recently been appointed as Head of the Mathematics Department and taught the relativity course. Synge and the other mathematics professors quickly recognised Nash's remarkable mathematical talents and persuaded him to become a mathematics specialist. They realised that he had the talent to become a professional mathematician and strongly encouraged him.

Nash quickly aspired to great things in mathematics. He took the William Lowell Putnam Mathematics Competition twice but, although he did well, he did not make the top five. It was a failure in Nash's eyes and one which he took badly. The Putnam Mathematics Competition was not the only thing going badly for Nash. Although his mathematics professors heaped praise on him, his fellow students found him a very strange person. Physically he was strong and this saved him from being bullied, but his fellow students took delight in making fun of Nash who they saw as an awkward immature person displaying childish tantrums. One of his fellow students wrote:-

We tormented poor John. We were very unkind. We were obnoxious. We sensed he had a mental problem.
Nash received a BA and an MA in mathematics in 1948. By this time he had been accepted into the mathematics programme at Harvard, Princeton, Chicago and Michigan. Now he felt that Harvard was the leading university and so he wanted to go there, but on the other hand their offer to him was less generous than that of Princeton. Nash felt that Princeton were keen that he went there while he felt that his lack of success in the Putnam Mathematics Competition meant that Harvard were less enthusiastic. He took a while to make his decision, while he was encouraged by Synge and his other professors to accept Princeton. When Lefschetz offered him the most prestigious Fellowship that Princeton had, Nash made his decision to study there.

In September 1948 Nash entered Princeton where he showed an interest in a broad range of pure mathematics: topology, algebraic geometry, game theory and logic were among his interests but he seems to have avoided attending lectures. Usually those who decide not to learn through lectures turn to books but this appears not to be so for Nash who decided not to learn mathematics "second-hand" but rather to develop topics himself. In many ways this approach was successful for it did contribute to him developing into one of the most original of mathematicians who would attack a problem in a totally novel way.

In 1949, while studying for his doctorate, he wrote a paper which 45 years later was to win a Nobel prize for economics. During this period Nash established the mathematical principles of game theory. P Ordeshook wrote:-

The concept of a Nash equilibrium n-tuple is perhaps the most important idea in noncooperative game theory. ... Whether we are analysing candidates' election strategies, the causes of war, agenda manipulation in legislatures, or the actions of interest groups, predictions about events reduce to a search for and description of equilibria. Put simply, equilibrium strategies are the things that we predict about people.
Milnor, who was a fellow student, describes Nash during his years at Princeton in [6]:-
He was always full of mathematical ideas, not only on game theory, but in geometry and topology as well. However, my most vivid memory of this time is of the many games which were played in the common room. I was introduced to Go and Kriegspiel, and also to an ingenious topological game which we called Nash in honor of the inventor.
In fact the game "Nash" was almost identical to Hex which had been invented independently by Piet Hein in Denmark.

In 1950 Nash received his doctorate from Princeton with a thesis entitled Non-cooperative Games. In the summer of that year he worked for the RAND Corporation where his work on game theory made him a leading expert on the Cold War conflict which dominated RAND's work. He worked there from time to time over the next few years as the Corporation tried to apply game theory to military and diplomatic strategy. Back at Princeton in the autumn of 1950 he began to work seriously on pure mathematical problems. It might seem that someone who had just introduced ideas which would, one day, be considered worthy of a Nobel Prize would have no problems finding an academic post. However, Nash's work was not seen at the time to be of outstanding importance and he saw that he needed to make his mark in other ways. We should also note that it was not really a move towards pure mathematics for he had always considered himself a pure mathematician. He had already obtained results on manifolds and algebraic varieties before writing his thesis on game theory. Hs famous theorem, that any compact real manifold is diffeomorphic to a component of a real-algebraic variety, was thought of by Nash as a possible result to fall back on if his work on game theory was not considered suitable for a doctoral thesis.

In 1952 Nash published Real algebraic manifolds in the Annals of Mathematics. The most important result in this paper is that two real algebraic manifolds are equivalent if and only if they are analytically homeomorphic. Although publication of this paper on manifolds established him as a leading mathematician, not everyone at Princeton was prepared to see him join the Faculty there. This was nothing to do with his mathematical ability which everyone accepted as outstanding, but rather some mathematicians such as Artin felt that they could not have Nash as a colleague due to his aggressive personality.

From 1952 Nash taught at the Massachusetts Institute of Technology but his teaching was unusual (and unpopular with students) and his examining methods were highly unorthodox. His research on the theory of real algebraic varieties, Riemannian geometry, parabolic and elliptic equations was, however, extremely deep and significant in the development of all these topics. His paper C1 isometric imbeddings was published in 1954 and Chern, in a review, noted that it:-

... contains some surprising results on the C1-isometric imbedding into an Euclidean space of a Riemannian manifold with a positive definite C0-metric.
Nash continued to develop this work in the paper The imbedding problem for Riemannian manifolds published in 1956. This paper contains his famous deep implicit function theorem. After this Nash worked on ideas that would appear in his paper Continuity of solutions of parabolic and elliptic equations which was published in the American Journal of Mathematics in 1958. Nash, however, was very disappointed when he discovered that E De Giorgi has proved similar results by completely different methods.

The outstanding results which Nash had obtained in the course of a few years put him into contention for a 1958 Fields' Medal but with his work on parabolic and elliptic equations was still unpublished when the Committee made their decisions he did not make it. One imagines that the Committee would have expected him to be a leading contender, perhaps even a virtual certainty, for a 1962 Fields' Medal but mental illness destroyed his career long before those decisions were made.

During his time at MIT Nash began to have personal problems with his life which were in addition to the social difficulties he had always suffered. He met Eleanor Stier and they had a son, John David Stier, who was born on 19 June 1953. Nash did not want to marry Eleanor although she tried hard to persuade him. In the summer of 1954, while working for RAND, Nash was arrested in a police operation to trap homosexuals. He was dismissed from RAND.

One of Nash's students at MIT, Alicia Larde, became friendly with him and by the summer of 1955 they were seeing each other regularly. In 1956 Nash's parents found out about his continuing affair with Eleanor and about his son John David Stier. The shock may have contributed to the death of Nash's father soon after but even if it didn't Nash may have blamed himself. In February of 1957 Nash married Alicia; by the autumn of 1958 she was pregnant but, a couple of months later near the end of 1958, Nash's mental state became very disturbed.

Norbert Wiener was one of the first to recognize that Nash's extreme eccentricities and personality problems were actually symptoms of a medical disorder. A long sad episode followed which included periods of hospital treatment, temporary recovery, then further treatment. Alicia eventually divorced Nash, although she continued to try to help him, and after a period of extreme mental torture he appeared to become lost to the world, removed from ordinary society, although he spent much of his time in the Mathematics Department at Princeton. The book [2] is highly recommended for its moving account of Nash's mental sufferings.

Slowly over many years Nash recovered. He delivered a paper at the tenth World Congress of Psychiatry in 1996 describing his illness; it is reported in [3]. He was described in 1958 as the:-

... most promising young mathematician in the world ...
but he soon began to feel that:-
... the staff at my university, the Massachusetts Institute of Technology, and later all of Boston were behaving strangely towards me. ... I started to see crypto-communists everywhere ... I started to think I was a man of great religious importance, and to hear voices all the time. I began to hear something like telephone calls in my head, from people opposed to my ideas. ...The delirium was like a dream from which I seemed never to awake.
Despite spending periods in hospital because of his mental condition, his mathematical work continued to have success after success. He said:-
I would not dare to say that there is a direct relation between mathematics and madness, but there is no doubt that great mathematicians suffer from maniacal characteristics, delirium and symptoms of schizophrenia.
In the 1990s Nash made a recovery from the schizophrenia from which he had suffered since 1959. His ability to produce mathematics of the highest quality did not totally leave him. He said:-
I would not treat myself as recovered if I could not produce good things in my work.
Nash was awarded (jointly with Harsanyi and Selten) the 1994 Nobel Prize in Economic Science for his work on game theory. In 1999 he was awarded the Leroy P Steele Prize by the American Mathematical Society:-
... for a seminal contribution to research.

Article by: J J O'Connor and E F Robertson

5 posted on 12/26/2001 11:59:17 AM PST by E. Pluribus Unum
[ Post Reply | Private Reply | To 1 | View Replies]

To: E. Pluribus Unum
I appreciate that Nash refers to his birth date as his "beginning as a legally recognized individual" -- a subtle pro-life comment?

Friday night my wife and I are going to a screening of "A Beautiful Mind" with the M.I.T. Club of Princeton, followed by dinner and drinks -- John and Alicia Nash will be the guests of honor.

The three most striking things about Nash's life story:
1) he was one of the top 10 most original mathematicians of the century, unfortunately it's not so easy for a non-mathematician to appreciate this but it's ultimately the most important fact about him
2) his wife cared for him even after they were divorced and they remarried his summer after more than 30 years
3) their son, also a brilliant mathematician, also became schizophrenic and, unlike his father, has not recovered

Nasar's book "A Beautiful Mind" is the best biography of a mathematician I've read. A new book of Nash's most important papers has just come out and is worthwhile reading for anyone who knows any college-level math (there is plenty of supplementary material explaining the significance of the more difficult papers, but Nash's work is actually much easier to read than most math of comparable importance -- it is so original that much of it starts from first principles rather than depending heavily on earlier technical work).

6 posted on 12/26/2001 12:34:25 PM PST by VeritatisSplendor
[ Post Reply | Private Reply | To 1 | View Replies]

To: VeritatisSplendor
I loved the movie. As a late-bloomer I did not discover math until most of my brain cells had jelled, but I have often regretted my mathematical deficiencies. After seeing the movie, maybe I was lucky not to be a gifted mathematician. John Nash certainly paid dearly for his gift.
7 posted on 12/26/2001 12:40:06 PM PST by E. Pluribus Unum
[ Post Reply | Private Reply | To 6 | View Replies]

To: E. Pluribus Unum
Correlation is not causation. Most great mathematicians have no mental problems, though a greater fraction of them have mental problems than of the overall population.
8 posted on 12/26/2001 12:43:46 PM PST by VeritatisSplendor
[ Post Reply | Private Reply | To 7 | View Replies]

To: VeritatisSplendor
Correlation is not causation.

I know that, but in Nash's case it seems that his ability to discern patterns so vivdly would have contributed to his conspiracy paranoia. Couple that with the isolation that resulted from his general lack of social skills and you have a pretty good formula for mental illness.

9 posted on 12/26/2001 12:56:01 PM PST by E. Pluribus Unum
[ Post Reply | Private Reply | To 8 | View Replies]

To: VeritatisSplendor
"beginning as a legally recognized individual" -- a subtle pro-life comment? In his case, I would not be surprised if this was about something bigger --- like the eternity of soul, for instance: in the sense not of semi-infinite line from now to thereafter, but rather as a straight line or a circle. The references to Zarathustra are somewhat telling in this regard (in my opinion). I do not mean, of course, to put words in his mouth.

I met him a few times --- the first being in 1995, when he attended to a conference abroad, for the first time since his illness. The last time I saw him was in the summer of 2000. He appears to be a soft-spoken, mild-mannered man, which I suppose you will observe for yourself on Friday.

It is so unfortunate that this brilliant mind was preoccupied with "other matters" for so long. As Publilius Syrus once said,

"Brevis ipsa vita est sed malis fit longior.
(Our life is short but is made longer by misfortunes."
Regards, TQ.
10 posted on 12/26/2001 1:35:25 PM PST by TopQuark
[ Post Reply | Private Reply | To 6 | View Replies]

To: TopQuark
Had a nice time with the MIT Club of Princeton and the Nashes tonight. The movie was better than I expected. I said to Alicia afterwards "I understand that you would prefer the movie to be neither too close nor too distant to the actual facts of your lives -- were you satisfied with the choices made?" She said "very satisfied".
11 posted on 12/29/2001 12:18:08 AM PST by VeritatisSplendor
[ Post Reply | Private Reply | To 10 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson