Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Tabletop Particle Accelerator
Scientific Computing ^ | Thu, 06/20/2013 - 2:31pm | University of Texas at Austin

Posted on 06/25/2013 1:00:50 PM PDT by null and void


The interior of the vacuum chamber in which the acceleration occurs. The laser beam arrives from the right. The gas cell, within which the acceleration of electrons occurs, is in the center of the chamber. The actual acceleration occurs over a distance of about an inch. Courtesy of The University of Texas at Austin

AUSTIN, Texas — Physicists at The University of Texas at Austin have built a tabletop particle accelerator that can generate energies and speeds previously reached only by major facilities that are hundreds of meters long and cost hundreds of millions of dollars to build.

"We have accelerated about half a billion electrons to 2 gigaelectronvolts over a distance of about 1 inch," said Mike Downer, professor of physics in the College of Natural Sciences. "Until now that degree of energy and focus has required a conventional accelerator that stretches more than the length of two football fields. It's a downsizing of a factor of approximately 10,000."

The results, which were published this week in Nature Communications, mark a major milestone in the advance toward the day when multi-gigaelectronvolt (GeV) laser plasma accelerators are standard equipment in research laboratories around the world.

Downer said he expects 10 GeV accelerators of a few inches in length to be developed within the next few years, and he believes 20 GeV accelerators of similar size could be developed within a decade.

Downer said that the electrons from the current 2 GeV accelerator can be converted into "hard" X-rays as bright as those from large-scale facilities. He believes that with further refinement they could even drive an X-ray free electron laser, the brightest X-ray source currently available to science.

A tabletop X-ray laser would be transformative for chemists and biologists, who could use the bright X-rays to study the molecular basis of matter and life with atomic precision, and femtosecond time resolution, without traveling to a large national facility.

"The X-rays we'll be able to produce are of femtosecond duration, which is the time scale on which molecules vibrate and the fastest chemical reactions take place," said Downer. "They will have the energy and brightness to enable us to see, for example, the atomic structure of single protein molecules in a living sample."

To generate the energetic electrons capable of producing these X-rays, Downer and his colleagues employed an acceleration method known as laser-plasma acceleration. It involves firing a brief but intensely powerful laser pulse into a puff of gas.

"To a layman it looks like low technology," said Downer. "All you do is make a little puff of gas with the right density and profile. The laser pulse comes in. It ionizes that gas and makes the plasma, but it also imprints structure in it. It separates electrons from the ion background and creates these enormous internal space-charge fields. Then the charged particles emerge right out of the plasma, get trapped in those fields, which are racing along at nearly the speed of light with that laser pulse, and accelerate in them."

Downer compared it to what would happen if you threw a motorboat into a lake with its engines churning. The boat (the laser) makes a splash, then creates a wave as it moves through the lake at high speed. During that initial splash some droplets (charged particles) break off, get caught up in the wave and accelerate by surfing on it.

"At the other end of the lake they get thrown off into the environment at incredibly high speeds," said Downer. "That's our 2 GeV electron beam."

Former UT Austin physicist Toshiki Tajima and the late UCLA physicist John Dawson conceived the idea of laser-plasma acceleration in the late 1970s. Scientists have been experimenting with this concept since the early 1990s, but they've been limited by the power of their lasers. As a result the field had been stuck at a maximum energy of about 1 GeV for years.

Downer and his colleagues were able to use the Texas Petawatt Laser, one of the most powerful lasers in the world, to push past this barrier. In particular the petawatt laser enabled them to use gases that are much less dense than those used in previous experiments.

"At a lower density, that laser pulse can travel faster through the gas," said Downer. "But with the earlier generations of lasers, when the density got too low, there wasn't enough of a splash to inject electrons into the accelerator, so you got nothing out. This is where the petawatt laser comes in. When it enters low density plasma, it can make a bigger splash."

Downer said that now that he and his team have demonstrated the workability of the 2 GeV accelerator, it should be only a matter of time until 10 GeV accelerators are built. That threshold is significant because 10 GeV devices would be able to do the X-ray analyses that biologists and chemists want.

"I don't think a major breakthrough is required to get there," he said. "If we can just keep the funding in place for the next few years, all of this is going to happen. Companies are now selling petawatt lasers commercially, and as we get better at doing this, companies will come into being to make 10 GeV accelerator modules. Then the end users, the chemists and biologists, will come in, and that will lead to more innovations and discoveries."


TOPICS: Science
KEYWORDS:
ZAP!
1 posted on 06/25/2013 1:00:50 PM PDT by null and void
[ Post Reply | Private Reply | View Replies]

To: null and void

Couple that with the table-top antimatter gun and we have a awesome weapon!.............


2 posted on 06/25/2013 1:01:49 PM PDT by Red Badger (Want to be surprised? Google your own name......Want to have fun? Google your friend's names........)
[ Post Reply | Private Reply | To 1 | View Replies]

To: null and void
He believes that with further refinement they could even drive an X-ray free electron laser

If this can significantly miniaturize a free electron laser, this has massive military applications.

A free electron laser is "tunable" and thus can be set to the best wavelength to pass through humid air, dust, etc. based on conditions. It is the ideal laser type for the navy, problem is you need a 100 foot linear accelerator in the ship with current technology.

3 posted on 06/25/2013 1:15:09 PM PDT by Strategerist
[ Post Reply | Private Reply | To 1 | View Replies]

To: null and void
each of us is wearing an unlicensed nuclear accelerator on his back....


4 posted on 06/25/2013 1:15:11 PM PDT by The_Victor (If all I want is a warm feeling, I should just wet my pants.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: null and void
But can it be converted to an overthruster?

Calling John Whorfin!

5 posted on 06/25/2013 1:26:09 PM PDT by jeffc (The U.S. media are our enemy)
[ Post Reply | Private Reply | To 1 | View Replies]

To: jeffc

That’s Big-boo-TAY!


6 posted on 06/25/2013 1:27:54 PM PDT by null and void (Republicans create the tools of oppression, and the democrats gleefully use them!)
[ Post Reply | Private Reply | To 5 | View Replies]

To: The_Victor

Famous (infamous?) as the last movie in which the EPA was portrayed as the petty, vindictive, lying turds that they are


7 posted on 06/25/2013 1:30:05 PM PDT by Hegewisch Dupa
[ Post Reply | Private Reply | To 4 | View Replies]

To: null and void

I’m afraid the Viking Kitties will be wanting one of these.


8 posted on 06/25/2013 2:01:30 PM PDT by zeugma (Those of us who work for a living are outnumbered by those who vote for a living.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: null and void

Cool! A 1 GeV tabletop electron accelerator....oh, btw (buried deep down in the article)...you need a petawatt (that’s 1,000,000 GIGAWATT!!!) laser to make it work.

Tell you what. I’ll build you a 100 GeV electron accelerator the size of a grain of salt. Inside a salt shaker.

Oh, all you need to do is drop a megaton nuke on it. Simple!


9 posted on 06/25/2013 3:21:40 PM PDT by Moltke ("I am Dr. Sonderborg," he said, "and I don't want any nonsense.")
[ Post Reply | Private Reply | To 1 | View Replies]

To: Moltke
If you fire a 1015 watts for 10-15 seconds once a second it dissipates an average power of 1 watt...
10 posted on 06/25/2013 3:29:35 PM PDT by null and void (Republicans create the tools of oppression, and the democrats gleefully use them!)
[ Post Reply | Private Reply | To 9 | View Replies]

To: null and void
If you fire a 1015 watts for 10-15 seconds once a second it dissipates an average power of 1 watt...

I guess the question is,  how much power do you actually need to run one of these? Can ya just plug it into the wall, and not have it blow every breaker in the lab?  Do you need a flux capaciter to power this sucker?

11 posted on 06/25/2013 4:46:24 PM PDT by zeugma (Those of us who work for a living are outnumbered by those who vote for a living.)
[ Post Reply | Private Reply | To 10 | View Replies]

To: zeugma

If there was ever a question that begged for a simple answer, that would be it.

I can’t give you one.

If you fired the laser less than 1500 times a second a standard 15 amp circuit could handle it.

ASSUMING all the power went to the laser (unknown how much goes to control circuits, cooling equipment, etc). ASSUMING the laser is 100% efficient (it isn’t!) and several other equally bad or worse assumptions...


12 posted on 06/25/2013 4:55:34 PM PDT by null and void (Republicans create the tools of oppression, and the democrats gleefully use them!)
[ Post Reply | Private Reply | To 11 | View Replies]

To: null and void

True enough. But you still need a huge laser to achieve that kind of power density. This is not your hand-held laser pointer...

Which makes the “table top” GeV accelerator headline hyperbolic, because the laser is part of the instrumentation.


13 posted on 06/26/2013 1:18:06 AM PDT by Moltke ("I am Dr. Sonderborg," he said, "and I don't want any nonsense.")
[ Post Reply | Private Reply | To 10 | View Replies]

To: null and void

sooo, is this small particle accelerator the same kind
of thang they were to build in Texas in the 80s that
was to cover several sq. miles??


14 posted on 06/28/2013 4:38:04 AM PDT by urtax$@work (The only kind of memorial is a Burning memorial !)
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson