Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Dueling Drawing Boards: Sizing up the CEV Design
Yahoo ^ | May 26, 2006 | David Leonard

Posted on 06/01/2006 11:49:01 PM PDT by demlosers

Leading aerospace contractors are eagerly awaiting NASA's multi-billion dollar decision on who'll build the space agency's follow-on to the space shuttle now set for retirement in 2010.

Flying NASA's Crew Exploration Vehicle (CEV) by 2014 is vital to what's dubbed the Constellation Systems--the spaceship, boosters and interrelated hardware needed to tend the International Space Station, return to the Moon by 2020, and plant footprints on Mars in future years.

Will it be Lockheed Martin or the team of Northrop Grumman/Boeing--each group partnered with a cast of all-star subcontractors--that will work with NASA to field the space agency's first new human transportation system since the space shuttle?

Companies are tight-lipped about their respective, now-submitted-to-NASA proposals. Final revisions are due late July. Handling acquisition of the CEV is NASA's Johnson Space Center in Houston, Texas.

"We are currently evaluating proposals and plan to down select and award the Phase 2 contract in the August/September time frame," said Michael Braukus, a NASA Headquarters spokesman. "All other information is competition sensitive and will not be provided at this time," he told SPACE.com.

More runway ahead

NASA's chief, Mike Griffin, has dubbed the CEV effort as "Apollo on steroids"--and there's every indication that industrial-strength ways to recapture human adventuring beyond low Earth orbit are in the offing.

The Northrop Grumman/Boeing CEV team is holding their cards tight. "We're clearly in a competition. I don't feel it's the right time to be coming out with a lot of details about how we plan to tackle the job," said Doug Young, Vice President and CEV Program Manager at Northrop Grumman.

Young said NASA requirements are evolving given the space agency's own internal studies, with their team providing data to the customer. That process has been smooth, Young told SPACE.com. The various technological approaches they have taken, he said, have been weighed in terms of development risk and cost risk.

"One does that very carefully ... and that's really what is embodied in our proposal," Young added. Until the process is completed, he is reticent to discuss details as "there's still more runway ahead."

Workforce challenges

Workforce issues are a concern, says Boeing's John Elbon, Vice President and Program Manager, Constellation/Space Exploration. "A big challenge NASA has ahead of them is transitioning the shuttle and space station workforce of today to work on CEV and other programs ... and do it in such a way that we safely fly the shuttle and finish the station," he said.

Elbon said by combining the shuttle and station workforce under one leader, that will jump start the transitioning of experienced people to take on the upswing in CEV work.

"NASA is not pushing a lot of technology around the exploration program ... at least I don't see it," said Art Stephenson, Sector Vice President, Space Exploration Systems, Northrop Grumman Integrated Systems. "They are more interested in getting the job done. To do that you need to reduce risk and that means using existing technology," he told SPACE.com.

For the long-term, Stephenson said, NASA will be embracing new technology, such as liquid oxygen/methane engines. "But when budgets are tight, it's hard to bring in new technology. That adds risk and cost to the program," he said, with any good program manager trying to reduce new technology in order to maintain schedule and cost.

Apollo technology was significantly less than what is available, ready to be pulled off the shelf now, Stephenson said. By implementing CEV with today's upgraded technology, "it's a matter of just going and doing it," he said.

"We think we are offering NASA a really good team," Stephenson said. "Our proposal is focused on what's the best answer for the taxpayer and for NASA."

Not your daddy's Oldsmobile

While the CEV/Constellation project debatably mirrors Apollo of the 1960s, there are a number of 21st century nuances being teased out.

John Karas, Vice President of Space Exploration for Lockheed Martin Space Systems Company, points to his firm's past and on-going capsule and thermal protection system work. The company's Genesis and Stardust return capsules to Earth hit right on target, and the technology has been honed at Mars too.

Indeed, Lockheed Martin just got the go-ahead to fabricate the heatshield for the Mars Science Laboratory--the largest ever built at about 15 feet (4.5 meters) in diameter. In contrast, the heatshields of the Mars Exploration Rovers measured 8.5 feet (2.6 meters).

Lockheed Martin is drawing upon that savvy, Karas said, in its bid for NASA's CEV that will utilize a capsule design 16.5 feet (5 meters) in diameter. By the way, Apollo capsule heatshields were smaller than CEV, measuring 12.8 feet (3.9 meters).

"Everything except the shape [of CEV] is brand new," Karas told SPACE.com. "It's not your daddy's Oldsmobile."

Karas said that even the Apollo-like CEV capsule profile can offer new ways to do skip trajectories as it plows back into Earth's atmosphere. "We're getting more out of a capsule shape than anybody has done before," he explained.

Integrated marvel

Lockheed Martin's CEV design is "an integrated marvel" that is stuffed with the latest in avionics--fault tolerant systems that offer autonomy, high-reliability and redundancy, Karas said. Better yet, software and avionics upgrades can be plugged in without a lot of system and hardware changes.

Getting the six-person CEV space-worthy before 2014 is doable, Karas said, noting that in NASA's request for proposals the space agency had set the date as 2012. "We think we can do it in 2012 and even better ... we can beat 2012 credibly for cost and schedule and not sacrifice the performance of the vehicle," he said.

"We're ready to move forward," said Cleon Lacefield, Vice President and Program Manager for the CEV at Lockheed Martin Space Systems Company. Lacefield said the CEV program maximizes astronaut safety, with abort coverage provided at all aspects of flight. Still needed, however, is more understanding of how the CEV's solid rocket booster ride is progressing ... to better tie data into the abort modes of the vehicle, he said.

"It's a design goal for both the CEV and the Crew Launch Vehicle to look at how we can streamline the system to one that's affordable ... so that we can afford to invest in the other elements of exploration," Lacefield said. "Our team is ready to go."

Decisive discriminators

As NASA mulls over volumes of technical data supplied by CEV program contractors, decisive discriminators come into play, Jerry Grey, Director, Science and Technology Policy for the American Institute of Aeronautics and Astronautics (AIAA) said.

"Of course, price and how well the designs meet NASA's formal requirements will be obvious discriminators, but there is not likely to be much difference between the bids on these," Grey told SPACE.com.

Schedule--and especially its credibility--will be another critical discriminator, in view of the pressure NASA is under to replace the shuttle as soon as possible after its retirement in 2010, Grey explained. But the integration issues are likely to create the most diversity between the contractors' bids, he added.

Grey said how the CEV interfaces with its spiffed up, shuttle-spawned solid rocket booster launcher, along with the rocket stage needed to kick the CEV beyond low Earth orbit, as well as between the CEV and the Lunar Surface Access Module (LSAM)--these are items to watch.

Despite the simplicity of the basic capsule concept, Grey added, the mission profile requires a good deal of sophistication in melding the Crew Launch Vehicle and the CEV--with its escape tower--and then docking with and integrating the Earth Departure Stage and the LSAM in orbit.

"The bidder who can best demonstrate an understanding of the issues involved here, and can convince NASA that their solutions to these issues are safe, reliable, cost-effective, and likely to impose the fewest schedule-busting 'unknown unknowns,' would get high marks in the proposal review," Grey concluded.


TOPICS: Government; News/Current Events
KEYWORDS: cev; constellationsys; nasa; rs68; space

RELEASE: 06-226

NASA's Exploration Systems Progress Report

NASA has chosen the RS-68 engine to power the core stage of the agency's heavy lift cargo launch vehicle intended to carry large payloads to the moon.

The announcement supersedes NASA's initial decision to use a derivative of the space shuttle main engine as the core stage engine for the heavy lift launch vehicle.

The cargo launch vehicle will serve as NASA's primary vessel for safe, reliable delivery of resources to space. It will carry large-scale hardware and materials for establishing a permanent moon base, as well as food, fresh water and other staples needed to extend a human presence beyond Earth orbit.

Recent studies examining life-cycle cost showed the RS-68 is best suited for NASA's heavy-lift cargo requirements. The decision to change the core stage engine required an increase in the size of the core propulsion stage tank, from a 27.5-foot diameter tank to 33-foot diameter tank, to provide additional propellant required by the five RS-68 engines.

The RS-68 is the most powerful liquid oxygen/liquid hydrogen booster in existence, capable of producing 650,000 pounds of thrust at sea level. In contrast, the space shuttle main engine is capable of producing 420,000 pounds of thrust at sea level. The RS-68, upgraded to meet NASA's requirements, will cost roughly $20 million per engine, a dramatic cost savings over the shuttle main engine.

The prime contractor for the RS-68 engine is Pratt & Whitney Rocketdyne of Canoga Park, Calif. Pratt & Whitney Rocketdyne is the same company that manufactures the shuttle main engine.

The RS-68 is used in the Delta IV launcher, the largest of the Delta rocket family developed in the 1990s by the U.S. Air Force for its evolved expendable launch vehicle program and commercial launch applications.

The cargo launch vehicle effort includes multiple project element teams at NASA centers and contract organizations around the nation and is led by the Exploration Launch Office at NASA's Marshall Space Flight Center in Huntsville, Ala.

The project office is part of the Constellation Program led by NASA's Johnson Space Center in Houston. Constellation is a key program of NASA's Exploration Systems Mission Directorate in Washington.

For information about NASA's exploration efforts, visit:


RS-68 engine


New Lunar Lander


Crew Vehicle and Lunar Lander in moon orbit

1 posted on 06/01/2006 11:49:04 PM PDT by demlosers
[ Post Reply | Private Reply | View Replies]

To: demlosers

I would like to remind NASA this piece of advice from the philosopher Seneca(in Latin):

Per aspera ad astra

Its absolutely beautiful!


2 posted on 06/02/2006 12:06:50 AM PDT by garbageseeker (Vincit Omnia Vertas- translation:Truth Conquers All.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: garbageseeker
How about taking those funds and spending them on material support so our Soldiers and Marines can have Tanks, Bradleys, M113 APCS and Mechanized Artillery along with a few light planes to help keep track of it all..

Instead of 5 ton road bound Humvees. Strykers and multimillion dollar Predator Drones which have about a 50% crash rate currently I understand.


W
3 posted on 06/02/2006 4:09:44 AM PDT by WLR ("fugit impius nemine persequente iustus autem quasi leo confidens absque terrore erit")
[ Post Reply | Private Reply | To 2 | View Replies]

To: WLR

"How about taking those funds and spending them on material support so our Soldiers and Marines can have Tanks, Bradleys, M113 APCS and Mechanized Artillery along with a few light planes to help keep track of it all.."

It's hard to refute that proposal.


4 posted on 06/02/2006 4:37:44 AM PDT by RoadTest (For the love of money is the root of all evil - I Timothy 6:10)
[ Post Reply | Private Reply | To 3 | View Replies]

To: demlosers

Looks like the CEV is being designed for land landings rather than sea splashdowns. An airbag contract has been let, and there will be retro-rockets.


5 posted on 06/13/2006 2:43:05 PM PDT by RightWhale (Off touch and out of base)
[ Post Reply | Private Reply | To 1 | View Replies]

To: WLR
How about taking those funds and spending them on material support

Congress approved $90 billion for iraq operations today.

6 posted on 06/13/2006 2:44:38 PM PDT by RightWhale (Off touch and out of base)
[ Post Reply | Private Reply | To 3 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson