Free Republic
Browse · Search
General/Chat
Topics · Post Article


1 posted on 09/23/2011 8:22:13 AM PDT by decimon
[ Post Reply | Private Reply | View Replies ]


To: neverdem; DvdMom; grey_whiskers; Ladysmith; Roos_Girl; Silentgypsy; conservative cat; ...

Ping


2 posted on 09/23/2011 8:22:55 AM PDT by decimon
[ Post Reply | Private Reply | To 1 | View Replies ]

To: decimon

cool...


3 posted on 09/23/2011 8:34:32 AM PDT by HangnJudge
[ Post Reply | Private Reply | To 1 | View Replies ]

To: decimon

Geez.
Another article by a health professional who doesn’t realize that Alzheimer’s is caused by helicobacter pylori, the same bacteria that causes ulcers.


4 posted on 09/23/2011 8:40:02 AM PDT by BuffaloJack (2012 is the opportunity to get rid of Obama and his Empire of Lies.)
[ Post Reply | Private Reply | To 1 | View Replies ]

To: decimon
More...

http://hmg.oxfordjournals.org/content/20/15/3067.short

MicroRNAs (miRNAs) are post-transcriptional gene expression regulators, playing key roles in neuronal development, plasticity and disease. Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the presence of protein inclusions or Lewy bodies and a progressive loss of dopaminergic neurons in the midbrain

http://cancerres.aacrjournals.org/content/67/18/8433.full

MicroRNAs (miRNA) are a recently discovered class of noncoding RNAs that negatively regulate gene expression. Recent evidence indicates that miRNAs may play an important role in cancer. However, the mechanism of their deregulation in neoplastic transformation has only begun to be understood.

http://www.dzne.de/en/about-us/public-relations/press-releases/news-detail/news/eine-mikro-rna-als-schluesselregulator-von-lernfaehigkeit-und-der-alzheimer-erkrankung.html

In the last two decades, however, another class of critically important molecules has emerged: small RNA molecules, including micro-RNAs. It is now well established that micro-RNAs play a key role in the regulation of cell function."A micro-RNA regulates the production of an estimated 300-400 proteins. This class of molecules can be regarded as a switch that coordinates the transition of cells from one state to another

5 posted on 09/23/2011 8:43:12 AM PDT by HangnJudge
[ Post Reply | Private Reply | To 1 | View Replies ]

To: decimon

This whole area of research is on the threshold of big breakthroughs. Yesterday I attended a program at Duke University Med School on the neurobiology of various psychological disorders. The specific topic was molecular genetics relating to serotonin receptors and how close they are to identifying the risks for neuropsychiatric diseases in a person. It identifies a predisposition in the genetic transcription controllers which are influenced by the environment to manifest the disease.

At the same time there was a similar grand rounds at the UNC Chapel Hill Med School on the neurobiology of autism, looking at the molecular genetics of the disease.

It’s still a Nature vs. Nurture debate even at the molecular level!!! It’s fascinating research.


8 posted on 09/23/2011 8:57:15 AM PDT by tired&retired
[ Post Reply | Private Reply | To 1 | View Replies ]

To: decimon

For the Neuroscience buffs, here is another interesting article:

Soldiers’ Amygdalae Show Scars
A year and a half after soldiers have returned from war, impairments in the regulatory circuitry of the amygdala remain.
By Kerry Grens | August 30, 2011

http://the-scientist.com/2011/08/30/soldiers-amygdalae-show-scars/

A chronically overactive amygdala, the brain region involved in fear, is a hallmark of an unhealthy response to traumatic events. New research, published today (August 30) in Molecular Psychiatry, shows that some soldiers—who have no mental health deficits after a return from deployment—also harbor signs of trauma within the regulatory network of this brain region.

The findings could help researchers determine “what changes [in the brain] help us predict who becomes sick and who recovers and leads a normal life,” said Ahmad Hariri, a professor at Duke University who was not involved in this study.

The amygdala mediates humans’ fear response, and researchers have found that its overreaction is related to psychological disorders such as posttraumatic stress disorder (PTSD), anxiety and depression. People with PTSD, for example, have heightened activity in the amygdala when they are exposed to potential stressors, such as images of threatening faces.

In the new study, the researchers compared 23 Dutch combat soldiers who had been deployed to Afghanistan with 16 soldiers who stayed home. They measured brain activity using fMRI as the soldiers were exposed to angry or fearful faces.

The findings revealed different neural responses to the faces depending on how much fear the soldiers experienced—and not necessarily how much combat they were in. Immediately after returning from Afghanistan, those soldiers who reported feeling the greatest threat abroad displayed the most activity in the amygdala when they viewed the faces. Soldiers who didn’t feel as threatened had a less sensitive amygdala.


9 posted on 09/23/2011 9:04:27 AM PDT by tired&retired
[ Post Reply | Private Reply | To 1 | View Replies ]

Free Republic
Browse · Search
General/Chat
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson