Free Republic
Browse · Search
General/Chat
Topics · Post Article

To: BenLurkin; thackney; cpdiii; Miss Marple

Poles do reverse quite often, geologically speaking.


9 posted on 11/25/2013 11:05:30 AM PST by CPT Clay (Follow me on Twitter @Clay N TX)
[ Post Reply | Private Reply | To 1 | View Replies ]


To: CPT Clay

Magnetic maps of the Atlantic sea floor appear like zebra stripes as the poles flip flop over the eons.


14 posted on 11/25/2013 11:13:54 AM PST by enraged
[ Post Reply | Private Reply | To 9 | View Replies ]

To: CPT Clay
Not long after the first geomagnetic polarity time scales were produced, scientists began exploring the possibility that reversals could be linked to extinctions. Most such proposals rest on the assumption that the Earth's magnetic field would be much weaker during reversals. Possibly the first such hypothesis was that high energy particles trapped in the Van Allen radiation belt could be liberated and bombard the Earth. Detailed calculations confirm that, if the Earth's dipole field disappeared entirely (leaving the quadrupole and higher components), most of the atmosphere would become accessible to high energy particles, but would act as a barrier to them, and cosmic ray collisions would produce secondary radiation of beryllium-10 or chlorine-36.

An increase of beryllium-10 was noted in a 2012 German study showing a peak of beryllium-10 in Greenland ice cores during a brief complete reversal 41,000 years ago which led to the magnetic field strength dropping to an estimated 5% of normal during the reversal. There is evidence that this occurs both during secular variation and during reversals.

Another hypothesis by McCormac and Evans assumes that the Earth's field would disappear entirely during reversals. They argue that the atmosphere of Mars may have been eroded away by the solar wind because it had no magnetic field to protect it. They predict that ions would be stripped away from Earth's atmosphere above 100 km. However, the evidence from paleointensity measurements is that the magnetic field does not disappear. Based on paleointensity data for the last 800,000 years, the magnetopause is still estimated to be at about 3 Earth radii during the Brunhes-Matuyama reversal. Even if the magnetic field disappeared, the solar wind may induce a sufficient magnetic field in the Earth's ionosphere to shield the surface from energetic particles.

Hypotheses have also been advanced linking reversals to mass extinctions. Many such arguments were based on an apparent periodicity in the rate of reversals; more careful analyses show that the reversal record is not periodic. It may be, however, that the ends of superchrons have caused vigorous convection leading to widespread volcanism, and that the subsequent airborne ash caused extinctions.

Tests of correlations between extinctions and reversals are difficult for a number of reasons. Larger animals are too scarce in the fossil record for good statistics, so paleontologists have analyzed microfossil extinctions. Even microfossil data can be unreliable if there are hiatuses in the fossil record. It can appear that the extinction occurs at the end of a polarity interval when the rest of that polarity interval was simply eroded away. Statistical analysis shows no evidence for a correlation between reversals and extinctions.

29 posted on 11/25/2013 12:10:28 PM PST by kabar
[ Post Reply | Private Reply | To 9 | View Replies ]

Free Republic
Browse · Search
General/Chat
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson