Free Republic
Browse · Search
General/Chat
Topics · Post Article

To: All

Quantum mind

History

Eugene Wigner developed the idea that quantum mechanics has something to do with the workings of the mind. He proposed that the wave function collapses due to its interaction with consciousness. Freeman Dyson argued that “mind, as manifested by the capacity to make choices, is to some extent inherent in every electron.”[2]

Other contemporary physicists and philosophers considered these arguments to be unconvincing.[3] Victor Stenger characterized quantum consciousness as a “myth” having “no scientific basis” that “should take its place along with gods, unicorns and dragons.”[4]

David Chalmers argued against quantum consciousness. He instead discussed how quantum mechanics may relate to dualistic consciousness.[5] Chalmers is skeptical of the ability of any new physics to resolve the hard problem of consciousness.[6][7]

Quantum mind approaches

Bohm

David Bohm viewed quantum theory and relativity as contradictory, which implied a more fundamental level in the universe.[8] He claimed both quantum theory and relativity pointed towards this deeper theory, which he formulated as a quantum field theory. This more fundamental level was proposed to represent an undivided wholeness and an implicate order, from which arises the explicate order of the universe as we experience it.

Bohm’s proposed implicate order applies both to matter and consciousness. He suggested that it could explain the relationship between them. He saw mind and matter as projections into our explicate order from the underlying implicate order. Bohm claimed that when we look at matter, we see nothing that helps us to understand consciousness.

Bohm discussed the experience of listening to music. He believed the feeling of movement and change that make up our experience of music derive from holding the immediate past and the present in the brain together. The musical notes from the past are transformations rather than memories. The notes that were implicate in the immediate past become explicate in the present. Bohm viewed this as consciousness emerging from the implicate order.

Bohm saw the movement, change or flow, and the coherence of experiences, such as listening to music, as a manifestation of the implicate order. He claimed to derive evidence for this from Jean Piaget’s[9] work on infants. He held these studies to show that young children learn about time and space because they have a “hard-wired” understanding of movement as part of the implicate order. He compared this “hard-wiring” to Chomsky’s theory that grammar is “hard-wired” into human brains.

Bohm never proposed a specific means by which his proposal could be falsified, nor a neural mechanism through which his “implicate order” could emerge in a way relevant to consciousness.[8] Bohm later collaborated on Karl Pribram’s holonomic brain theory as a model of quantum consciousness.[10]

According to philosopher Paavo Pylkkänen, Bohm’s suggestion “leads naturally to the assumption that the physical correlate of the logical thinking process is at the classically describable level of the brain, while the basic thinking process is at the quantum-theoretically describable level.”[11]

Penrose and Hameroff

Theoretical physicist Roger Penrose and anaesthesiologist Stuart Hameroff collaborated to produce the theory known as Orchestrated Objective Reduction (Orch-OR). Penrose and Hameroff initially developed their ideas separately and later collaborated to produce Orch-OR in the early 1990s. The theory was reviewed and updated by the authors in late 2013.[12][13]

Penrose’s argument stemmed from Gödel’s incompleteness theorems. In Penrose’s first book on consciousness, The Emperor’s New Mind (1989), he argued that while a formal system cannot prove its own consistency, Gödel’s unprovable results are provable by human mathematicians.[14] He took this disparity to mean that human mathematicians are not formal proof systems and are not running a computable algorithm. According to Bringsjorg and Xiao, this line of reasoning is based on fallacious equivocation on the meaning of computation.[15]

Penrose determined wave function collapse was the only possible physical basis for a non-computable process. Dissatisfied with its randomness, Penrose proposed a new form of wave function collapse that occurred in isolation and called it objective reduction. He suggested each quantum superposition has its own piece of spacetime curvature and that when these become separated by more than one Planck length they become unstable and collapse.[16] Penrose suggested that objective reduction represented neither randomness nor algorithmic processing but instead a non-computable influence in spacetime geometry from which mathematical understanding and, by later extension, consciousness derived.[16]

Hameroff provided a hypothesis that microtubules would be suitable hosts for quantum behavior.[17] Microtubules are composed of tubulin protein dimer subunits. The dimers each have hydrophobic pockets that are 8 nm apart and that may contain delocalized pi electrons. Tubulins have other smaller non-polar regions that contain pi electron-rich indole rings separated by only about 2 nm. Hameroff proposed that these electrons are close enough to become entangled.[18] Hameroff originally suggested the tubulin-subunit electrons would form a Bose–Einstein condensate, but this was discredited.[19] He then proposed a Frohlich condensate, a hypothetical coherent oscillation of dipolar molecules. However, this too was experimentally discredited.[20]

Furthermore, he proposed that condensates in one neuron could extend to many others via gap junctions between neurons, forming a macroscopic quantum feature across an extended area of the brain. When the wave function of this extended condensate collapsed, it was suggested to non-computationally access mathematical understanding and ultimately conscious experience that were hypothetically embedded in the geometry of spacetime.[citation needed]

However, Orch-OR made numerous false biological predictions, and is not an accepted model of brain physiology.[21] In other words, there is a missing link between physics and neuroscience,[22] for instance, the proposed predominance of ‘A’ lattice microtubules, more suitable for information processing, was falsified by Kikkawa et al.,[23][24] who showed all in vivo microtubules have a ‘B’ lattice and a seam. The proposed existence of gap junctions between neurons and glial cells was also falsified.[25] Orch-OR predicted that microtubule coherence reaches the synapses via dendritic lamellar bodies (DLBs), however De Zeeuw et al. proved this impossible,[26] by showing that DLBs are located micrometers away from gap junctions.[27]

In January 2014, Hameroff and Penrose claimed that the discovery of quantum vibrations in microtubules by Anirban Bandyopadhyay of the National Institute for Materials Science in Japan in March 2013[28] corroborates the Orch-OR theory.[13][29]

Umezawa, Vitiello, Freeman

Hiroomi Umezawa and collaborators proposed a quantum field theory of memory storage.[30][31] Giuseppe Vitiello and Walter Freeman proposed a dialog model of the mind. This dialog takes place between the classical and the quantum parts of the brain.[32][33][34] Their quantum field theory models of brain dynamics are fundamentally different from the Penrose-Hameroff theory.

Pribram, Bohm, Kak

Karl Pribram’s holonomic brain theory (quantum holography) invoked quantum mechanics to explain higher order processing by the mind.[35][36] He argued that his holonomic model solved the binding problem.[37] Pribram collaborated with Bohm in his work on the quantum approaches to mind and he provided evidence on how much of the processing in the brain was done in wholes.[38] He proposed that ordered water at dendritic membrane surfaces might operate by structuring Bose-Einstein condensation supporting quantum dynamics.[39]

Although Subhash Kak’s work is not directly related to that of Pribram, he likewise proposed that the physical substrate to neural networks has a quantum basis,[40][41] but asserted that the quantum mind has machine-like limitations.[42] He points to a role for quantum theory in the distinction between machine intelligence and biological intelligence, but that in itself cannot explain all aspects of consciousness.[43][44]

Stapp

Henry Stapp proposed that quantum waves are reduced only when they interact with consciousness. He argues from the Orthodox Quantum Mechanics of John von Neumann that the quantum state collapses when the observer selects one among the alternative quantum possibilities as a basis for future action. The collapse, therefore, takes place in the expectation that the observer associated with the state. Stapp’s work drew criticism from scientists such as David Bourget and Danko Georgiev.[45] Georgiev[46][47] criticized Stapp’s model in two respects:

Stapp’s mind does not have its own wavefunction or density matrix, but nevertheless can act upon the brain using projection operators. Such usage is not compatible with standard quantum mechanics because one can attach any number of ghostly minds to any point in space that act upon physical quantum systems with any projection operators. Therefore, Stapp’s model negates “the prevailing principles of physics”.[46]
Stapp’s claim that quantum Zeno effect is robust against environmental decoherence directly contradicts a basic theorem in quantum information theory that acting with projection operators upon the density matrix of a quantum system can only increase the system’s Von Neumann entropy.[46][47]

Stapp has responded to both of Georgiev’s objections.[48][49]

David Pearce

British philosopher David Pearce defends what he calls physicalistic idealism (””Physicalistic idealism” is the non-materialist physicalist claim that reality is fundamentally experiential and that the natural world is exhaustively described by the equations of physics and their solutions [...]”[50]), and has conjectured that unitary conscious minds are physical states of quantum coherence (neuronal superpositions).[51][52][53][54][55] This conjecture is, according to Pearce, amenable to falsification unlike most theories of consciousness, and Pearce has outlined an experimental protocol describing how the hypothesis could be tested.[56]

Criticism

The main argument against the quantum mind hypothesis is the assertion that quantum states in the brain would lose coherency before they reached a scale where they could be useful for neural processing. This supposition was elaborated by Tegmark. His calculations suppose that quantum systems in the brain decohere at sub-picosecond timescales, assumed[vague] to be too short to control brain function.[57][58]

https://en.wikipedia.org/wiki/Quantum_mind

15 posted on 09/06/2017 8:08:37 PM PDT by ETL (See my FR Home page for a closer look at today's Communist/Anarchist protest groups)
[ Post Reply | Private Reply | To 14 | View Replies ]


Image and video hosting by TinyPic

"In the context of encounters of Science and Religion, "In Search of Divine Reality" proposes that the traditional conflict between the two disciplines is mainly one involving classical, Newtonian Science; and many of its most pressing issues have obtained an entirely different meaning by the change in world view effected by the discovery of Quantum Mechanics.

In Classical Physics, there is no room for the Spiritual and for God. In the world of Quantum Mechanics, the foundations of physical reality have revealed all the aspects of a transcendent reality; with non-material entities at the basis of material things; with components of ordinary things that are not as real as the things that they make; with instantaneous, long-distance (non-local) connections pervading the universe; and with elementary entities that have mind-like properties.

Thus, in the same way in which dead atoms can form living organisms and stupid molecules can form intelligent brains, the metaphysical can engender the physical.

Without the employment of advanced mathematics, the book uses the phenomena of Quantum Reality to provide a clear and generally understandable description of the concepts of Quantum Mechanics and its consequences for our views of human nature."

http://comp.uark.edu/~schafer/
=======================================================

On the Foundations of Metaphysics in the
Mind-like Background of Physical Reality

by Lothar Schäfer

That the basis of the material world is non-material is a transcription of the fact that the properties of things are determined by quantum waves, - probability amplitudes which carry numerical relations, but are devoid of mass and energy. As a consequence of the wave-like aspects of reality, atoms do not have any shape - a solid outline in space - but the things do, which they form; and the constituents of matter, the elementary particles, are not in the same sense real as the real things that they constitute.

Rather, left to themselves they exist in a world of possibilities, “between the idea of a thing and a real thing”, as Heisenberg wrote, in superpositions of quantum states, in which a definite place in space, for example, is not an intrinsic attribute. That is, when such a particle is not observed it is, in particular, nowhere.

In the quantum phenomena we have discovered that reality is different than we thought. Visible order and permanence are based on chaos and transitory entities. Mental principles - numerical relations, mathematical forms, principles of symmetry - are the foundations of order in the universe, whose mind-like properties are further established by the fact that changes in information can act, without any direct physical intervention, as causal agents in observable changes in quantum states. Prior to the discovery of these phenomena information-driven reactions were a prerogative of mind. “The universe”, Eddington wrote, “is of the nature of a thought. The stuff of the world is mind-stuff”.

Mind-stuff, in a part of reality behind the mechanistic foreground of the world of space-time energy sensibility, as Sherrington called it, is not restricted to Einstein locality. The existence of non-local physical effects - faster than light phenomena - has now been well established by quantum coherence-type experiments like those related to Bell’s Theorem. If the universe is non-local, something that happens at this moment in its depths may have an instantaneous effect a long distance away, for example right here and right now. By every molecule in our body we are tuned to the mind-stuff of the universe.

In this way the quantum phenomena have forced the opening of a universe that Newton’s mechanism once blinded and closed. Unintended by its creator, Newton’s mechanics defined a machine, without any life or room for human values, the Parmenidian One, forever unchanging and predictable, “eternal matter ruled by eternal laws”, as Sheldrake wrote. In contrast, the quantum phenomena have revealed that the world of mechanism is just the cortex of a deeper and wider, transcendent, reality. The future of the universe is open, because it is unpredictable. Its present is open, because it is subject to non-local influences that are beyond our control. Cracks have formed in the solidity of the material world from which emanations of a different type of reality seep in. In the diffraction experiments of material particles, a window has opened to the world of Platonic ideas.

That the universe should be mind-like and not communicate with the human mind - the one organ to which it is akin - is not very likely. In fact, one of the most fascinating faculties of the human mind is its ability to be inspired by unknown sources - as though it were sensitive to signals of a mysterious origin. It is at this point that the pieces of the puzzle fall into place. Ever since the discovery of Hume’s paradox - the principles that we use to establish scientific knowledge cannot establish themselves - science has had an illegitimate basis. Hume was right: in every external event we observe conjunction, but infer connection. Thus, causality is not a principle of nature but a habit of the human mind. At the same time, Hume was not right in postulating that there is no single experience of causality. Because, when the self-conscious mind itself is directly involved in a causal link, for example when its associated body takes part in a collision, or when the mind by its own free will is the cause of some action, then there is a direct experience of, and no doubt that, causal connections exist. When this modification of the paradox is coupled with the quantum base, a large number of pressing problems find their delightful solutions.

Like the nature of reality, the nature of knowledge is counter-intuitive, and not at all like the automatic confidence that we have in sensations of this phenomenon. The basis of knowledge is threefold. The premises are experience of reality, employment of reason, and reliance on certain non-rational, non-empirical principles, such as the Assumptions of identity, factuality, permanence, Causality, and induction. Where do these principles come from? Neither from an experience of external phenomena, nor from a process of reasoning, but from a system program of the self-conscious mind. By being an extension of the mind-like background of nature and partaking of its order, mind gives the epistemic principles - those used in deriving knowledge - certainty. Since they are not anchored in the world of space-time and mass-energy but are valid nevertheless, they seem to derive from a higher order and transcendent part of physical reality. They are, it can be assumed, messengers of the mind-like order of reality.

In the same way, moral principles. Traditional societies based their social order on myths and religious explanations. By assuming a purpose in the world, they told people why things are the way they are, and why they should act the way they were supposed to act. In the “animist ontogenies” values and knowledge derived from a single source, and life had meaning in an “animist covenant” as Monod called it. By destroying the ontological base of the animist explanations, - their astronomy, physics, and chemistry, - science also destroyed the foundations of their values.

In this process Monod saw the origin of the contemporary sickness in culture, das Unbehagen in der Kultur: on the one hand science is the basis for our power and survival; on the other, it has broken the animist covenant, rendered life meaningless in the process, and disconnected the world of values from the world of facts.

The sickness of spirit and the concomitant erosion of moral standards are the great danger for the future of mankind, already apparent in the public adoration of violence and debased behavior. At its roots is the unsolved question, on whose authority are the moral principles to be based now that the authority of the animist myths has been found lacking?

For those who are willing to listen, the answer is: on the authority of mind. In the same way that the self-conscious mind grants certainty to the epistemic principles, it invests authority in the moral principles. Like the former, the moral principles are non-empirical and non-rational, - not derived by a process of logic nor verified by experience - messengers from a higher reality beyond the front of mass-energy sensibility.

Epistemic principles give us a sense of what is true and false; moral principles, of what is right and wrong. The former establish the certainty of identity, permanence, factuality, causality; the latter, of responsibility, morality, honesty. By the same process that allows us to accept, without possible verification, the epistemic principles, we can also accept the authority of the moral principles. Violation of any one of them will put us in contrast to the nature of reality. If the nature of the universe is mind-like, it must be assumed to have a spiritual order as well as a physical order. As the epistemic principles are expressions of physical order, the ethical principles are expressions of the spiritual order of physical reality. By being an extension of the transcendent part of the nature and partaking of its order, mind establishes the authority of the ethical principles.

The challenge of reality and the ability to explore it are wonderful gifts to mankind. Understanding reality requires refinement of thought. That is, it has to do with culture. It requires an effort, is not afforded by automatic, intuitive reflex. Making sense of the world takes the response to a challenge, not the complacency of common sense. It is one and the same as striving for the moral life. An important part of it is the need to become aware of the specific character of human nature, to recognize “the human mystery” as Eccles called it: the mystery of how mind and body interact, how self-conscious human beings with values emerged in an evolutionary process supposedly based on blind chance and brutality. The evidence is growing that there is more to human nature than the laws of physics or chemistry, more to the process of evolution than blind chance and brutality; that evolution is more than, as Monod wrote, “a giant lottery, and human beings live at the boundary of an alien world that is deaf to our music and indifferent to our hopes and suffering and crimes”.

The barbaric view of reality is mechanistic. It is the easy view of classical science and of common sense. In epistemology mechanism is naive realism, the view that all knowledge is based on unquestionable facts, on apodictically verified truths. In physics mechanism is the view that the universe is clockwork, closed, and entirely predictable on the basis of unchanging laws. In biology, mechanism is the view that all aspects of life, its evolution, our feelings and values, are ultimately explicable in terms of the laws of physics and chemistry. In our legal system, mechanism is the view that the assumption of precise procedural technicalities constitutes perfect justice. In our political system, mechanism is the view that the assertion of finely formulated personal rights constitutes the ideal democracy. In our public administration, it is the view that responsible service manifests itself by the enforcement of finely split bureaucratic regulations. All of these attitudes are the attitudes of barbarians.

The quantum phenomena have taught us that, without naive realism, knowledge is possible. They have taught us that, without naive animism an ethic of knowledge, as Monod has called it, and a life with values are possible. Principles exist which are valid even though they cannot be verified. The discovery of the quantum phenomena has established a new covenant - between the human mind and the mind-like background of the universe - one that provides a home again to the homeless and meaning to the meaningless life. Whether or not the human mind is separate of the brain, as Sherrington and Eccles thought, I do not know. But I do not doubt that it is human only in some parts, and in others shares in the mind-like background of the universe. It is now possible to believe that the mind is the realization of universal potentia, a manifestation of the essence of the universe. Therefore, the only good life is in harmony with the nature of reality.

**************************************************************

Lothar Schäfer is the author of the book, In Search of Divine Reality - Science as a Source of Inspiration, . The book is, in essence, a brilliant description of the encounter of Science and Religion, wherein Schäfer proposes “that the traditional conflict between the two disciplines is mainly one involving classical, Newtonian Science; and many of its most pressing issues have obtained an entirely different meaning by the change in world view effected by the discovery of Quantum Mechanics.”

Lothar Schäfer is the Edgar Wertheim Distinguished Professor of Physical Chemistry at the University of Arkansas in Fayetteville. He received his Ph.D. (in Chemistry) from the University of Munich in 1965, and is the recipient of numerous awards for his scientific work. His current research interests include topics in Applied Quantum Chemistry and Molecular Structural Studies by Electron Diffraction.

In a review of Schäfer’s book, Professor Quentin Smith, Department of Philosophy, Western Michigan University, Kalamazoo, Michigan, writes:

“Schäfer’s book is an integrative approach to Modern Science and Religion that aims to show how some traditional religious and philosophical notions can be understood or redefined in terms of modern science. The scientific explanations are reliable and the scientific interpretations of religious ideas are interesting and should be taken seriously and respectfully by even the most sober-minded adherents of the scientific world-view. Rather than science being opposed or subordinated to religion, religious views are refashioned in terms of currently accepted scientific theories. Most of the arguments of the book are based on conclusions drawn from the phenomena of quantum reality and it is one of the clearest introductory explanations of quantum mechanics on the market. Schäfer’s book is written in a lively and accessible style that will appeal to the general reader. I really enjoyed reading this book.”

16 posted on 09/07/2017 3:22:44 AM PDT by ETL (See my FR Home page for a closer look at today's Communist/Anarchist protest groups)
[ Post Reply | Private Reply | To 15 | View Replies ]

Free Republic
Browse · Search
General/Chat
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson