Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

The Testimony of Dr. Michel F. Levesque, M.D., on Adult Stem Cells treating Parkinson's Disease
Science, Technology, and Space Hearing ^ | 07.14.04 | Michel F. Levesque, MD

Posted on 12/02/2006 7:18:51 PM PST by Coleus

My name is Michel Lévesque, and I am a physician, neuroscientist and neurosurgeon based at Cedars-Sinai Medical Center in Los Angeles. I am Associate Clinical Professor of Neurosurgery at the UCLA School of Medicine and member of the UCLA Brain Research Institute. I am also the founder of NeuroGeneration, a biotechnology company pioneering autologous neural stem cell therapies, and Chairman of the Foundation for Neural Repair, a not-for-profit foundation, sponsoring translational research to accelerate human trials using neural stem cells.

Mr. Chairman and members of the Subcommittee, I want to thank you for the opportunity to testify today on our current experience with the use of stem cells in humans, and more specifically, adult neural stem cell-derived neurons, for neurodegenerative disorders like Parkinson’s disease. Although non-partisan, my testimony attempts to provide a realistic perspective on the promises and limitations of cell therapy for neurological disorders, either from embryonic- or adult-derived stem cells. As a scientist and physician treating patients with irreversible neurological disorders, it is of utmost importance to understand both the fact and fiction of cell therapy and the hopes it generates in our patients and their families.

WHAT IS STEM CELL THERAPY?

Stem cell research and therapy are some of several new tools, like vaccines, genes or small molecules, targeting diseases not treated by traditional medication therapies. Stem cell research looks at basic mechanisms of the cell cycle, at sequential expression of different genes during the formation of the embryo, and at cellular specialization and differentiation into different tissues. Stem cell research can also explore the causes of diseases, cell degeneration and cell death.

Stem cell therapy attempts to replace the cell loss and induce repair mechanisms in models of disease. Clinical research and therapeutic trials, on the other hand, study the safety and efficacy of stem cell therapy in patients with certain disorders. Neural repair and neural transplantation using cell therapy aim at introducing cellular products, or biological modifiers, to replace the deficient cells and/or induce local neural repair in the central nervous system.

WHAT ARE HUMAN ADULT NEURAL STEM CELLS?

In nature, neural stem cells are formed after a cascade of sequential events activates genes within embryonic cells during development. They are derived from a specific layer of the embryo and can only become, under normal conditions, precursors of cells found only in the central nervous system. Since 1996, our laboratories have been involved with the isolation and characterization of human adult-derived neural stem cells, obtained from patients undergoing neurosurgical procedures. In the adult brain, these cells cannot on their own trigger repair responses. However, if placed in experimental laboratory conditions stimulating certain genes, these neural stem cells can be “awakened” and begin to divide and replicate events of normal development.

These newly created neural stem cells can grow for several months in laboratory conditions reaching several millions in number, a process called cell expansion. Their ability to self-replicate and form all types of cells found in the central nervous system can be verified in vitro under controlled conditions. They can be placed in storage or maintained in sterile incubators until ready for use. Prior to transplantation, neural stem cells are then exposed to a modified environment triggering differentiation, stopping the replication process to produce mature neurons of different types, including dopamine-secreting neurons, which are deficient in Parkinson’s disease. In the laboratory, differentiated neurons can be characterized with specific markers, and their function demonstrated by the increased production of dopamine.

These cells have survived transplantation and corrected motor deficits in a rat model of Parkinson’s disease. Our animal studies showed that human adult neural stem cells do not divide once differentiated, do not form aberrant tissue or tumors after chronic transplantation, and have normal karyotypes (number of chromosomes). Sterility is documented throughout the expansion phases.

These newly formed cells are unadulterated, having not been exposed to years of chronic oxidative stress and other predisposing factors leading to neurodegeneration. Autologous adult neural stem cells represent a new source of cell replacement with identical genetic material to the patient, and mitigate the risks of immune rejections and transmittable diseases generally associated with tissue transplants from a source external to the patient such as HIV, Encephalitis, Hepatitis and Creutzfeld-Jacobs Disease.

CAN STEM CELL THERAPY HELP NEURODEGENERATIVE DISEASES SUCH AS PARKINSON’S DISEASE?

Parkinson’s disease is associated with a progressive cell loss of midbrain dopamine-secreting neurons. Dopamine is an essential brain chemical for proper modulation and execution of motor function. Because of the limited spatial involvement and biochemical specificity, this disease may seem relatively easy to repair. Dopamine neurons delivered by fetal transplantation previously were shown to help certain patients with Parkinson’s disease, but had significant risk factors, complications, and ethical issues.

The causes of Parkinson’s disease remain unknown. Like Alzheimer’s disease, there is evidence showing that a combination of environmental factors and genetic predisposition are precursors to the disease. Current animal models, derived from toxic exposure or transgenic manipulation, do no replicate all changes found in the human brain.

In fact, Parkinson’s disease is much more complex in human patients because of secondary physiological and chemical changes throughout the rest of the brain, superimposed on long-term medical therapy. Indeed one of the major complications of dopamine drug therapy is the paradoxical creation of dyskinesia, another movement disorder involving uncontrollable thrashing movements.

This complication was also found in some patients receiving fetal transplantation, suggesting that an uncontrolled delivery of excessive dopamine may not be beneficial. Stem cell-derived products have the advantages of being produced under controlled environment and characterized both in their types and function prior to transplantation.

Embryonic stem cells have the potential to generate any type of cells and presumably can be guided in their differentiation to generate an unlimited number of dopamine neurons. One of the problems is to understand the proper steps to guide the gene expression along the formation of neural stem cells and then to achieve proper differentiation.

In addition there remain risks of unstable phenotypic expression, possible transdifferentiation into other types of tissue causing tumors, immune reactions in the host brain and questionable functional benefits. Several additional studies are needed in order to answer these questions and objectively compare these “off the shelf” cell lines to our customized approach using autologous adult neural stem cells.

While the use of somatic nuclear cell transfer (SNCT) technology could decrease risks of immune reactions, this area of research minimizes the importance of “imprinting”, or influences of the extra-nuclear material on normal cellular development.

Currently available embryonic cell lines are not appropriate to answer these scientific questions. Embryonic cell therapy has yet to be scientifically proven as safe, if even effective, in human patients.

MATURE NEURONS DERIVED FROM THE PATIENT’S OWN BRAIN CAN BE TRANSPLANTED BACK SAFELY AND IMPROVE SYMPTOMS.

We recently presented the clinical outcome of our autologous method at the International Congress of Parkinson’s disease and Movement Disorders in Rome. In accordance with our institutional review board, we transplanted a patient with advanced Parkinson’s disease with differentiated neurons derived from an initial needle biopsy. At three years post-operatively, the overall Unified Parkinson’s Disease Rating Scale (UPDRS) improved by 81% while “on” medication and 83% while “off” medication. We demonstrated here the long-term clinical remission of Parkinson’s disease symptoms in a single patient.

Because of their biocompatibility, safety and potential integration into the host striatum, autologous adult neural stem cells and stem cell-derived neurons represent an effective alternative to current cell therapy aimed at the restoration of dopamine neuronal loss in Parkinson’s disease. Under the guidance and supervision of the Food and Drug Administration (FDA) office of Cellular, Tissues and Gene Therapies and the Center for Biologics Evaluation and Treatment (CBER) we are about to begin Phase II trials using this promising cell therapy.

CONCLUSION

Degenerative and traumatic disorders of the brain represent an enormous burden to the patient, their family and health care providers. The current debate between the embryonic stem cell proponents and those who are opposed to their use distracts from other avenues with promising outcome, such as adult stem cell therapy. It also overlooks other important issues of resource allocation between basic and clinical research, health insurance, and patient care.

Scientific knowledge has rapidly progressed in the last five years and stem cell research and therapy remains a very promising field for treatment of neurological disorders. In a recent biotechnology industry meeting, a presentation had the approximate title: “Businesses are from Mars, Academics are from Venus”. What was forgotten there is that patients are from planet Earth and this is what should guide our efforts. Adult human neural stem cells derived from a patient’s own tissue can become a source of replacement neurons, useful for grafting in the treatment of neurodegenerative disorders. With time and adequate support this approach has the potential of making neural stem cell therapy acceptable and available to a large number of patients. Dear members of the committee, I appreciate the opportunity to present our results with the use of human adult neural stem cell-derived neurons and to contribute to an honest and objective debate on these important issues.


TOPICS: Culture/Society; Government
KEYWORDS: adultstemcells; dennisturner; healthcare; michelflevesque; parkinsons; parkinsonsdisease

1 posted on 12/02/2006 7:18:53 PM PST by Coleus
[ Post Reply | Private Reply | View Replies]

The Testimony of Dr. Dennis Turner about Treating his Parkinson's Disease using Adult Stem Cells
2 posted on 12/02/2006 7:19:18 PM PST by Coleus (I Support Research using the Ethical, Effective and Moral use of stem cells: non-embryonic "adult")
[ Post Reply | Private Reply | To 1 | View Replies]

To: Coleus

Interesting article. There is a mention of over medication of dopamine causing musclular contractions like those observed on Micheal Fox during his political speech. and the obvious observation that embryonic stem cells grow tumors and other side effects in their hosts while adult stem cells from the patient do not and are being used agressively by the scientific community to fight diseases.
thx for the post


3 posted on 12/02/2006 7:39:38 PM PST by kvanbrunt2
[ Post Reply | Private Reply | To 2 | View Replies]

To: Coleus

Horrible disease. My Aunt has battled it for perhaps nearly 30 years (almost half her life). She's in the most advanced stage now, trapped in an almost useless body and likely suffering from dementia. :-(


4 posted on 12/02/2006 7:40:06 PM PST by fieldmarshaldj (Cheney X -- Destroying the Liberal Democrat Traitors By Any Means Necessary -- Ya Dig ? Sho 'Nuff.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: fieldmarshaldj

My mother has Parkinson's, and she does not know me. But she always is glad to meet me, as a first encounter as it were, that I am one of her sons, until she forgets yet again, 30 seconds later, that I had some signficance in her life. She has no memory of my father, but sometimes remembers her parents, for a moment or two. She still has a very good vocabulary, which she uses effectively. The mind is a complex instrument. Some things go, and some don't.


5 posted on 12/02/2006 7:52:17 PM PST by Torie
[ Post Reply | Private Reply | To 4 | View Replies]

To: Torie

Awful. Sounds like she may also be suffering from Alzheimer's as well. Supposedly there is no way to definitively diagnose it until after the patient has died via autopsy. My grandmother died from its effects back in 2001 at 92 (though she didn't rapidly go downhill until after my Aunt and Uncle were forced to remove her from her home a few years beforehand -- it was too dangerous to have her live in that crime-ridden neighborhood in Albuquerque, but my Aunt stuck her in different retirement homes, rather than bring her in (she was actually kicked out of more than 1 because she was very difficult to deal with) -- she couldn't deal with the situation well, and kept threatening my parents with packing her off to us in Nashville). Ah, well... Hopefully in the near future we'll find a cure to these dreadful ailments.


6 posted on 12/02/2006 8:23:11 PM PST by fieldmarshaldj (Cheney X -- Destroying the Liberal Democrat Traitors By Any Means Necessary -- Ya Dig ? Sho 'Nuff.)
[ Post Reply | Private Reply | To 5 | View Replies]

To: Torie

My Dad died last year worn out and totally tired of his Parkinson's. His mind and wit was clear and sharp to the end; his brain's chemistry lab failed him. He was an OB/GYN by profession and missed the symptoms. Just after he retired (18 yrs+/-) a friend of his(businessman) who was diagnosed told him he had Parkinson's. Dad went to a neurologist and was diagnosed. He fought the loss of mobility with a vengance. He loved to play golf; when we finally had to deny him to drive a car was bad. He continued to play although his game was just slapping a ball around the course. He was still walking. He finally hit the wall despite sinemet et al March of 04 and was in his words "doomed" (wheel chair/bed bound). He read all the articles and we discussed options. He never thought that fetal cells should be the point of research. He passed away Mar. 05, just worn out, his mind still sharp. He was so tired of his condition once he couldn't walk; losing driving was bad, not being able to play golf(a shadow of his former game) was devastating, bedridden...
Terrible disease as all neuromusculoskelatal diseases are.
My prayers are with you.


7 posted on 12/03/2006 12:41:55 AM PST by Atchafalaya (When you are there thats the best)
[ Post Reply | Private Reply | To 5 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson