Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Newly-Discovered Star may be Third-Closest
spaceref.com ^ | 21 May 03 | staff

Posted on 05/21/2003 9:16:02 AM PDT by RightWhale

Newly-Discovered Star may be Third-Closest

Jet Propulsion Laboratory, Pasadena, Calif.

Goddard Space Flight Center, Greenbelt, Md.

The local celestial neighborhood just got more crowded with a discovery of a star that may be the third closest to the Sun. The star, "SO25300.5+165258," is a faint red dwarf star estimated to be about 7.8 light-years from Earth in the direction of the constellation Aries.

"Our new stellar neighbor is a pleasant surprise, since we weren't looking for it," said Dr. Bonnard Teegarden, an astrophysicist at NASA's Goddard Space Flight Center, Greenbelt, Md. Teegarden is lead author of a paper announcing the discovery to be published by the Astrophysical Journal. This work has been done in close collaboration with Dr. Steven Pravdo of NASA's Jet Propulsion Laboratory, Pasadena, Calif.

If its estimate of distance is confirmed, the newfound star will be the Sun's third-closest stellar neighbor, slightly farther than the Alpha Centauri system, actually a group of three stars a bit more than four light-years away, and Barnard's star, about six light-years away. One light-year is almost six trillion miles, or nearly 9.5 trillion kilometers.

The new star has only about seven percent of the mass of the Sun, and it is 300,000 times fainter. The star's feeble glow is the reason why it has not been seen until now, despite being relatively close.

"We discovered this star in September 2002 while searching for white dwarf stars in an unrelated program," said Teegarden. The team was looking for white dwarf stars that move rapidly across the sky. Celestial objects with apparent rapid motion are called High Proper Motion objects. An object of this type can be discovered in successive images of an area of sky because it noticeably shifts its position while its surroundings remain fixed. Since either a distant star moving quickly or a nearby star moving slower can exhibit the same High Proper Motion, astronomers must use other measurements to determine its distance from Earth.

During its star search, the team used the SkyMorph database for NASA's Near Earth Asteroid Tracking program, to search for asteroids that might be on a collision course for Earth. Pravdo is project manager of the asteroid tracking program and is principal investigator for SkyMorph, which was separately supported by NASA's Applied Information Systems Research Program. Like High Proper Motion stars, asteroids reveal themselves when they shift their position against background stars in successive images. Automated telescopes scan the sky, accumulating thousands of images for the Near Earth Asteroid Tracking program, which have been incorporated into SkyMorph, a web-accessible database, for use in other types of astronomical research.

Once the star revealed itself in the Near Earth Asteroid Tracking images, the team found other images of the same patch of sky to establish a rough distance estimate by a technique called trigonometric parallax. This technique is used to calculate distances to relatively close stars. As Earth progresses in its orbit around the Sun, the position of a nearby star will appear to shift compared to background stars much farther away -- the larger the shift, the closer the star.

The team refined their initial distance estimate with another technique called photometric parallax. They used the 3.5-meter (11.5 feet) Astrophysical Research Consortium telescope at the Apache Point observatory, Sunspot, N.M., to observe the star and separate its light into its component colors for analysis. This allowed the team to determine what kind of star it is. The analysis indicates it's similar to a red dwarf star (spectral type M6.5) that's shining by fusing hydrogen atoms in its core, like our Sun (called a main sequence star).

Once the type of star is known, its true brightness, called intrinsic luminosity, can be determined. Since all light-emitting objects appear dimmer as distance from them increases, the team compared how bright the new star appeared in their images to its intrinsic luminosity to improve their distance estimate.

Although the star resembles a M6.5 red dwarf, it actually appears three times dimmer than expected for this kind of star at the initial distance estimate of 7.8 light-years. The star could therefore really be farther than the rough trigonometric distance indicates; or, if the initial estimate holds, it could have unusual properties that make it shine less brightly than typical M6.5 red dwarfs. A more precise measurement of the new star's position to establish an improved trigonometric parallax distance is underway at the U.S. Naval Observatory. This will confirm or refute its status as one of our closest neighbors by late this year. Either way, we might get even more company soon: "Since the survey only covered a band of the sky (about 25 degrees in declination), it is entirely possible that other faint nearby objects remain to be discovered," said Teegarden.

In addition to Teegarden and Pravdo, the team includes Dr. Thomas McGlynn of Goddard Space Flight Center; Dr. Michael Hicks and Dr. Stuart Shaklan of JPL; Dr. Suzanne Hawley, Kevin Covey and Oliver Fraser, of the University of Washington, Seattle; and Dr. Iann Reid of the Space Telescope Science Institute, Baltimore, Md. An image and more information are available at .NASA.


TOPICS: Culture/Society; Extended News; Foreign Affairs; Technical
KEYWORDS: alphacentauri; barnardsstar; so253005165258
Navigation: use the links below to view more comments.
first 1-2021-39 next last
Third closest star system or fifth closest star.
1 posted on 05/21/2003 9:16:02 AM PDT by RightWhale
[ Post Reply | Private Reply | View Replies]

To: RightWhale
So this is not Wormwood, a.k.a. Planet X?

The one coming on a collision course with Earth?

2 posted on 05/21/2003 9:29:54 AM PDT by Taiwan Bocks
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
So we cannot even see the NEARBY stuff???? It took this long to find this one????

What, it's a mini-star?

3 posted on 05/21/2003 9:31:03 AM PDT by Lazamataz ( "People that quote themselves in their taglines bother me." - Lazamataz)
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
"NASA's Near Earth Asteroid Tracking program..."

I think NASA's neat.

4 posted on 05/21/2003 9:33:20 AM PDT by rudypoot
[ Post Reply | Private Reply | To 1 | View Replies]

To: Lazamataz
What, it's a mini-star?


5 posted on 05/21/2003 9:34:52 AM PDT by dirtboy (someone kidnapped dirtboy and replaced him with an exact replica)
[ Post Reply | Private Reply | To 3 | View Replies]

To: RightWhale
"SO25300.5+165258," is a faint red dwarf

Let me guess,
"SO25300.5+165258" is Lebanese for "Helen Thomas".

Well, it fits the substitution test.

6 posted on 05/21/2003 9:42:57 AM PDT by LTCJ
[ Post Reply | Private Reply | To 1 | View Replies]

To: Lazamataz
we cannot even see the NEARBY stuff????

That's right, we don't know Jacques.

7 posted on 05/21/2003 9:44:22 AM PDT by RightWhale (Theorems link concepts; proofs establish links)
[ Post Reply | Private Reply | To 3 | View Replies]

To: Taiwan Bocks
Planet X

No, this is real science.

8 posted on 05/21/2003 9:46:52 AM PDT by RightWhale (Theorems link concepts; proofs establish links)
[ Post Reply | Private Reply | To 2 | View Replies]

To: RightWhale
Bump for later reading
9 posted on 05/21/2003 10:06:22 AM PDT by MikeD (Why yes, I AM a rocket scientist!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
I remember a few years back some astronomer smugly stating that we had mapped everything within a couple lightyears and there couldn't possibly be anything left out there nearby to find.

*chuckle*
Come to think of it, I haven't seen any articles referencing the guy since then.

(The article had been a 'posit' piece about "What if the Sun DID have a binary neighbor. The "Nemesis" hypothesis dealing with the oort cloud and how it gets disrupted. Someone else had said, "If the sun does have a binary neighbor, it'd have to be d@mned dim.")
10 posted on 05/21/2003 11:11:35 AM PDT by Darksheare (Nox aeternus en pax.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Darksheare
The biggest surprise would be that there aren't any more surprises out there. They are still finding moons of Jupiter at this late date. Do we really know much at all about our own neighborhood?
11 posted on 05/21/2003 11:13:56 AM PDT by RightWhale (Theorems link concepts; proofs establish links)
[ Post Reply | Private Reply | To 10 | View Replies]

To: Taiwan Bocks
No the planet that is on a collision course with earth is Nibiru- home of the Anu-Naki


12 posted on 05/21/2003 11:23:55 AM PDT by Mr. K (I'm formidable with that)
[ Post Reply | Private Reply | To 2 | View Replies]

To: Mr. K
Gotta luv that Coast2Coast creating a delightful alternate reality. Too bad they are all Libertarians and/or Gaians. Every one.
13 posted on 05/21/2003 11:29:12 AM PDT by RightWhale (Theorems link concepts; proofs establish links)
[ Post Reply | Private Reply | To 12 | View Replies]

To: petuniasevan; RadioAstronomer
ping
14 posted on 05/21/2003 11:31:24 AM PDT by farmfriend ( Isaiah 55:10,11)
[ Post Reply | Private Reply | To 1 | View Replies]

To: RightWhale
The biggest surprise would be that there aren't any more surprises out there. They are still finding moons of Jupiter at this late date. Do we really know much at all about our own neighborhood?

Amen, brother. We don't even have UV spectra of Mercury yet, and won't until at least January. Mercury's just down the road. Heck, we haven't done much science with the far side of the Moon yet...

MD

15 posted on 05/21/2003 11:34:19 AM PDT by MikeD (Why yes, I AM a rocket scientist!)
[ Post Reply | Private Reply | To 11 | View Replies]

To: RightWhale
I know.
That's why I was so amused at that one guy stating that we'd found all our closest neighbors.

And we still haven't sent anything to check out Pluto yet.
Might be some interesting surprises out on that hunk of ice.

Personally, I wouldn't be surprised to find that we live in a rather odd binary star system.
But I rather doubt the UFO types insistence that there's aliens living on a planet circling it and bebothering us every three thousand years.
'Course- the implications of what I'm saying, the binary system deal, are that the sun would have to have a neighbor that is a brown dwarf or similarly dim odject for us to have not seen it yet.
Like the article mentioned star.
Rather oddly dim for a red dwarf.
16 posted on 05/21/2003 12:06:52 PM PDT by Darksheare (Nox aeternus en pax.)
[ Post Reply | Private Reply | To 11 | View Replies]

To: RightWhale
Crud, I coin a term and then miss-spell it.
"Oddject"
An object of bizarre existence or description.
The act or happenstance of being bizarre.
See Al Gore.
17 posted on 05/21/2003 12:24:39 PM PDT by Darksheare (Nox aeternus en pax.)
[ Post Reply | Private Reply | To 16 | View Replies]

To: RightWhale; farmfriend
Although the star resembles a M6.5 red dwarf, it actually appears three times dimmer than expected for this kind of star at the initial distance estimate of 7.8 light-years

There's a lot of joking going on, but hey, finding a little dim red dwarf nearby is harder than one would think. How does one notice a barely noticeable star? One way is the method used by Clyde Tombaugh to find Pluto (that's right, he already knew it had to be there). You photograph a certain area of the sky. Repeat the process later. In the case of Pluto, a few nights' spread showed the planet had moved against the background of stars.

Now a star, even a relatively close one, isn't going to show a lot of movement against the background. The images to compare will have to be taken months (for parallax) to years (for proper motion) apart. The change in position would be minor.

Another possibility is that the star is not underluminous and close but normal for its class and 3 times farther away. This is possible if it has a large proper motion. The star Aldebaran, for instance, is flying by our celestial neighborhood as a "loose" Population II (globular cluster type) star. A spectral study should indicate whether this star is Pop II. Even if it's not, it still could have been ejected from an open star cluster or even have originated in a dwarf galaxy that our own Milky Way has incorporated.

18 posted on 05/21/2003 1:15:30 PM PDT by petuniasevan (I'm hitting the control key but it's not giving me any!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Darksheare
And we still haven't sent anything to check out Pluto yet. Might be some interesting surprises out on that hunk of ice

In the works.

New Horizons:A Pluto/Kuiper Belt Mission

19 posted on 05/21/2003 1:21:10 PM PDT by petuniasevan (I'm hitting the control key but it's not giving me any!)
[ Post Reply | Private Reply | To 16 | View Replies]

To: Darksheare
I remember a few years back some astronomer smugly stating that we had mapped everything within a couple lightyears and there couldn't possibly be anything left out there nearby to find.

The sun is the only star within a couple lightyears. Are you sure it was an astronomer?

20 posted on 05/21/2003 1:22:11 PM PDT by biblewonk (Spose to be a Chrissssstian)
[ Post Reply | Private Reply | To 10 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-39 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson