Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Astronomers discover most massive stars to date (300 times more massive than the sun)
GeoJunk ^ | 7/21/10

Posted on 07/21/2010 2:04:57 PM PDT by LibWhacker

Using a combination of instruments on ESO’s Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters — millions of times more luminous than the Sun, losing weight through very powerful winds — may provide an answer to the question “how massive can stars be?”

A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO’s Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula’s extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613).

The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun.

In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses.

Very massive stars produce very powerful outflows. “Unlike humans, these stars are born heavy and lose weight as they age,” says Paul Crowther. “Being a little over a million years old, the most extreme star R136a1 is already ‘middle-aged’ and has undergone an intense weight loss programme, shedding a fifth of its initial mass over that time, or more than fifty solar masses.”

If R136a1 replaced the Sun in our Solar System, it would outshine the Sun by as much as the Sun currently outshines the full Moon. “Its high mass would reduce the length of the Earth's year to three weeks, and it would bathe the Earth in incredibly intense ultraviolet radiation, rendering life on our planet impossible,” says Raphael Hirschi from Keele University, who belongs to the team.

These super heavyweight stars are extremely rare, forming solely within the densest star clusters. Distinguishing the individual stars — which has now been achieved for the first time — requires the exquisite resolving power of the VLT’s infrared instruments [2].

The team also estimated the maximum possible mass for the stars within these clusters and the relative number of the most massive ones. “The smallest stars are limited to more than about eighty times more than Jupiter, below which they are ‘failed stars’ or brown dwarfs,” says team member Olivier Schnurr from the Astrophysikalisches Institut Potsdam. “Our new finding supports the previous view that there is also an upper limit to how big stars can get, although it raises the limit by a factor of two, to about 300 solar masses.”

Within R136, only four stars weighed more than 150 solar masses at birth, yet they account for nearly half of the wind and radiation power of the entire cluster, comprising approximately 100 000 stars in total. R136a1 alone energises its surroundings by more than a factor of fifty compared to the Orion Nebula cluster, the closest region of massive star formation to Earth.

Zooming in on the most massive stars ever found. Star R136a1 (far right) is in a dense cluster of stars 165,000 light years from earth

Zooming in on the most massive stars ever found. Star R136a1 (far right) is in a dense cluster of stars 165,000 light years from earth

Understanding how high mass stars form is puzzling enough, due to their very short lives and powerful winds, so that the identification of such extreme cases as R136a1 raises the challenge to theorists still further. “Either they were born so big or smaller stars merged together to produce them,” explains Crowther.

Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers’ findings raise the prospect of the existence of exceptionally bright, “pair instability supernovae” that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years.

Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. “Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon,” concludes Crowther.

This artist's impression (left) shows the relative sizes of young stars, from low mass 'yellow dwarfs' such as our Sun, through 'blue dwarf' stars that are eight times more massive than the Sun, to a 300 solar-mass star like R136a1 (right)

This artist's impression (left) shows the relative sizes of young stars, from low mass 'yellow dwarfs' such as our Sun, through 'blue dwarf' stars that are eight times more massive than the Sun, to a 300 solar-mass star like R136a1 (right) Notes

[1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses.

[2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO’s Very Large Telescope at Paranal, Chile.


TOPICS: Astronomy; Science
KEYWORDS: astronomers; astronomy; massive; michaelmoore; star

1 posted on 07/21/2010 2:05:00 PM PDT by LibWhacker
[ Post Reply | Private Reply | View Replies]

To: LibWhacker
...one weighing at birth more than 300 times the mass of the Sun...

Soon to be dwarfed by the size of our government and its debt...

2 posted on 07/21/2010 2:11:41 PM PDT by Loud Mime (Argue from the Constitution: Initialpoints.net)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

Just what are they going to do with this information? Use it as an excuse to raise taxes?


3 posted on 07/21/2010 2:19:58 PM PDT by B4Ranch (Remember, guys, the enemy is to the left and the middle.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker
...have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun...

In before the pics of Rosie, Michael Moore and Kirstie Alley...

4 posted on 07/21/2010 5:28:35 PM PDT by JRios1968 (The real first rule of Fight Club: don't invite Chuck Norris...EVER)
[ Post Reply | Private Reply | To 1 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson