Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Effects of Nuclear Explosions
Nuclear Weapons Frequently Asked Questions ^ | May 15, 1997 | Carey Sublette

Posted on 04/20/2008 8:05:40 PM PDT by primeval patriot

Physics of Nuclear Weapon Effects

Thermal radiation and blast are inevitable consequences of the near instantaneous release of an immense amount of energy in a very small volume, and are thus characteristic to all nuclear weapons regardless of type or design details. The release of ionizing radiation, both at the instant of explosion and delayed radiation from fallout, is governed by the physics of the nuclear reactions involved and how the weapon is constructed, and is thus very dependent on both weapon type and design.

Fireball Physics

The fireball is the hot ball of gas created when a nuclear explosion heats the bomb itself, and the immediate surrounding environment, to very high temperatures. As this incandescent ball of hot gas expands, it radiates part of its energy away as thermal radiation (including visible and ultraviolet light), part of its energy also goes into creating a shock wave or blast wave in the surrounding environment. The generation of these two destructive effects are thus closely linked by the physics of the fireball. In the discussion below I assume the fireball is forming in open air, unless stated otherwise.

The Early Fireball

Immediately after the energy-producing nuclear reactions in the weapon are completed, the energy is concentrated in the nuclear fuels themselves. The energy is stored as (in order of importance): thermal radiation or photons; as kinetic energy of the ionized atoms and the electrons (mostly as electron kinetic energy since free electrons outnumber the atoms); and as excited atoms, which are partially or completely stripped of electrons (partially for heavy elements, completely for light ones).

Thermal (also called blackbody) radiation is emitted by all matter. The intensity and most prevalent wavelength is a function of the temperature, both increasing as temperature increases. The intensity of thermal radiation increases very rapidly - as the fourth power of the temperature. Thus at the 60-100 million degrees C of a nuclear explosion, which is some 10,000 times hotter than the surface of the sun, the brightness (per unit area) is some 10 quadrillion (10^16) times greater! Consequently about 80% of the energy in a nuclear explosion exists as photons. At these temperatures the photons are soft x-rays with energies in the range of 10-200 KeV.

The first energy to escape from the bomb are the gamma rays produced by the nuclear reactions. They have energies in the MeV range, and a significant number of them penetrate through the tampers and bomb casing and escape into the outside world at the speed of light. The gamma rays strike and ionize the surrounding air molecules, causing chemical reactions that form a dense layer of "smog" tens of meters deep around the bomb. This smog is composed primarily of ozone, and nitric and nitrous oxides.

X-rays, particularly the ones at the upper end of the energy range, have substantial penetrating power and can travel significant distances through matter at the speed of light before being absorbed. Atoms become excited when they absorb x-rays, and after a time they re-emit part of the energy as a new lower energy x-ray. By a chain of emissions and absorptions, the x-rays carry energy out of the hot center of the bomb, a process called radiative transport. Since each absorption/re-emission event takes a certain amount of time, and the direction of re-emission is random (as likely back toward the center of the bomb as away from it), the net rate of radiative transport is considerably slower than the speed of light. It is however initially much faster than the expansion of the plasma (ionized gas) making up the fireball or the velocity of the neutrons.

An expanding bubble of very high temperatures is thus formed called the "iso-thermal sphere". It is a sphere were everything has been heated by x-rays to a nearly uniform temperature, initially in the tens of millions of degrees. As soon as the sphere expands beyond the bomb casing it begins radiating light away through the air (unless the bomb is buried or underwater). Due to the still enormous temperatures, it is incredibly brilliant (surface brightness trillions of times more intense than the sun). Most of the energy being radiated is in the x-ray and far ultraviolet range to which air is not transparent. Even at the wavelengths of the near ultraviolet and visible light, the "smog" layer absorbs much of the energy. Then too, at this stage the fireball is only a few meters across. Thus the apparent surface brightness at a distance, and the output power (total brightness) is not nearly as intense as the fourth-power law would indicate.

Blast Wave Development and Thermal Radiation Emission

As the fireball expands, it cools and the wavelength of the photons transporting energy drops. Longer wavelength photons do not penetrate as far before being absorbed, so the speed of energy transport also drops. When the isothermal sphere cools to about 300,000 degrees C (and the surface brightness has dropped to being a mere 10 million times brighter than the sun), the rate of radiative growth is about equal to the speed of sound in the fireball plasma. At this point a shock wave forms at the surface of the fireball as the kinetic energy of the fast moving ions starts transferring energy to the surrounding air. This phenomenon, known as "hydrodynamic separation", occurs for a 20 kt explosion about 100 microseconds after the explosion, when the fireball is some 13 meters across. A shock wave internal to the fireball caused by the rapidly expanding bomb debris may overtake and reinforce the fireball surface shock wave a few hundred microseconds later.

The shock wave initially moves at some 30 km/sec, a hundred times the speed of sound in normal air. This compresses and heats the air enormously, up to 30,000 degrees C (some five times the sun's surface temperature). At this temperature the air becomes ionized and incandescent. Ionized gas is opaque to visible radiation, so the glowing shell created by the shock front hides the much hotter isothermal sphere inside. The shock front is many times brighter than the sun, but since it is much dimmer than the isothermal sphere it acts as an optical shutter, causing the fireball's thermal power to drop rapidly.

The fireball is at its most brilliant just as hydrodynamic separation occurs, the great intensity compensating for the small size of the fireball. The rapid drop in temperature causes the thermal power to drop ten-fold, reaching a minimum in about 10 milliseconds for a 20 kt bomb (100 milliseconds for 1 Mt bomb). This "first pulse" contains only about 1 percent of the bomb's total emitted thermal radiation. At this minimum, the fireball of a 20 kt bomb is 180 meters across.

As the shock wave expands and cools to around 3000 degrees, it stops glowing and gradually also becomes transparent. This is called "breakaway" and occurs at about 15 milliseconds for a 20 kt bomb, when the shock front has expanded to 220 meters and is travelling at 4 km/second. The isothermal sphere, at a still very luminous 8000 degrees, now becomes visible and both the apparent surface temperature and brightness of the fireball climb to form the "second pulse". The isothermal sphere has grown considerably in size and now consists almost entirely of light at wavelengths to which air is transparent, so it regains much of the total luminosity of the first peak despite its lower temperature. This second peak occurs at 150 milliseconds for a 20 kt bomb, at 900 milliseconds for a 1 Mt bomb. After breakaway, the shock (blast) wave and the fireball do not interact further.

A firm cutoff for this second pulse is impossible to provide because the emission rate gradually declines over an extended period. Some rough guidelines are that by 300 milliseconds for a 20 kt bomb (1.8 seconds for a 1 Mt) 50% of the total thermal radiation has been emitted, and the rate has dropped to 40% of the second peak. These figures become 75% total emitted and 10% peak rate by 750 milliseconds (20 kt) and 4.5 second (1 Mt). The emission time scales roughly as the 0.45 power of yield (Y^0.45).

Although this pulse never gets as bright as the first, it emits about 99% of the thermal radiation because it is so much longer.

Ionizing Radiation Physics

There are four types of ionizing radiation produced by nuclear explosions that can cause significant injury: neutrons, gamma rays, beta particles, and alpha particles. Gamma rays are energetic (short wavelength) photons (as are X-rays), beta particles are energetic (fast moving) electrons, and alpha particles are energetic helium nuclei. Neutrons are damaging whether they are energetic or not, although the faster they are, the worse their effects.

They all share the same basic mechanism for causing injury though: the creation of chemically reactive compounds called "free radicals" that disrupt the normal chemistry of living cells. These radicals are produced when the energetic radiation strikes a molecule in the living issue, and breaks it into ionized (electrically charged) fragments. Fast neutrons can do this also, but all neutrons can also transmute ordinary atoms into radioactive isotopes, creating even more ionizing radiation in the body.

The different types of radiation present different risks however. Neutrons and gamma rays are very penetrating types of radiation. They are the hardest to stop with shielding. They can travel through hundreds of meters of air and the walls of ordinary houses. They can thus deliver deadly radiation doses even if an organism is not in immediate contact with the source. Beta particles are less penetrating, they can travel through several meters of air, but not walls, and can cause serious injury to organisms that are near to the source. Alpha particles have a range of only a few centimeters in air, and cannot even penetrate skin. Alphas can only cause injury if the emitting isotope is ingested.

The shielding effect of various materials to radiation is usually expressed in half-value thickness, or tenth-value thickness: in other words, the thickness of material required to reduce the intensity of radiation by one-half or one-tenth. Successive layers of shielding each reduce the intensity by the same proportion, so three tenth-value thickness reduce the intensity to one-thousandth (a tenth-value thickness is about 3.3 half-value thicknesses). Some example tenth-value thicknesses for gamma rays are: steel 8.4-11 cm, concrete 28-41 cm, earth 41-61 cm, water 61-100 cm, and wood 100-160 cm. The thickness ranges indicate the varying shielding effect for different gamma ray energies.

Even light clothing provides substantial shielding to beta rays.

Prompt Radiation

Radiation is produced directly by the nuclear reactions that generate the explosion, and by the decay of radioactive products left over (either fission debris, or induced radioactivity from captured neutrons).

The explosion itself emits a very brief burst (about 100 nanoseconds) of gamma rays and neutrons, before the bomb has blown itself apart. The intensity of these emissions depends very heavily on the type of weapon and the specific design. In most designs the initial gamma ray burst is almost entirely absorbed by the bomb (tamper, casing, explosives, etc.) so it contributes little to the radiation hazard. The neutrons, being more penetrating, may escape. Both fission and fusion reactions produce neutrons. Fusion produces many more of them per kiloton of yield, and they are generally more energetic than fission neutrons. Some weapons (neutron bombs) are designed specifically to emit as much energy in the form as neutrons as possible. In heavily tamped fission bombs few if any neutrons escape. It is estimated that no significant neutron exposure occurred from Fat Man, and only 2% of the total radiation dose from Little Boy was due to neutrons.

The neutron burst itself can be a significant source of radiation, depending on weapon design. As the neutrons travel through the air they are slowed by collisions with air atoms, and are eventually captured. Even this process of neutron attenuation generates hazardous radiation. Part of the kinetic energy lost by fast neutrons as they slow is converted into gamma rays, some with very high energies (for the 14.1 MeV fusion neutrons). The duration of production for these neutron scattering gammas is about 10 microseconds. The capture of neutrons by nitrogen-14 also produces gammas, a process completed by 100 milliseconds.

Immediately after the explosion, there are substantial amounts of fission products with very short half-lifes (milliseconds to minutes). The decay of these isotopes generate correspondingly intense gamma radiation that is emitted directly from the fireball. This process is essentially complete within 10 seconds.

The relative importance of these gamma ray sources depends on the size of the explosion. Small explosions (20 kt, say) can generate up to 25% of the gamma dose from the direct gammas and neutron reactions. For large explosions (1 Mt) this contribution is essentially zero. In all cases, the bulk of the gammas are produced by the rapid decay of radioactive debris.

Delayed Radiation

Radioactive decay is the sole source of beta and alpha particles. They are also emitted during the immediate decay mentioned above of course, but their range is too short to make any prompt radiation contribution. Betas and alphas become important when fallout begins settling out. Gammas remain very important at this stage as well.

Fallout is a complex mixture of different radioactive isotopes, the composition of which continually changes as each isotope decays into other isotopes. Many isotopes make significant contributions to the overall radiation level. Radiation from short lived isotopes dominates initially, and the general trend is for the intensity to continually decline as they disappear. Over time the longer lived isotopes become increasingly important, and a small number of isotopes emerge as particular long-term hazards.

Radioactive isotopes are usually measured in terms of curies. A curie is the quantity of radioactive material that undergoes 3.7x10^10 decays/sec (equal to 1 g of radium-226). More recently the SI unit bequerel has become common in scientific literature, one bequerel is 1 decay/sec . The fission of 57 grams of material produces 3x10^23 atoms of fission products (two for each atom of fissionable material). One minute after the explosion this mass is undergoing decays at a rate of 10^21 disintegrations/sec (3x10^10 curies). It is estimated that if these products were spread over 1 km^2, then at a height of 1 m above the ground one hour after the explosion the radiation intensity would be 7500 rads/hr.

Isotopes of special importance include iodine-131, strontium-90 and 89, and cesium-137. This is due to both their relative abundance in fallout, and to their special biological affinity. Isotopes that are readily absorbed by the body, and concentrated and stored in particular tissues can cause harm out of proportion to their abundance.

Iodine-131 is a beta and gamma emitter with a half-life of 8.07 days (specific activity 124,000 curies/g) Its decay energy is 970 KeV; usually divided between 606 KeV beta, 364 KeV gamma. Due to its short half-life it is most dangerous in the weeks immediately after the explosion, but hazardous amounts can persist for a few months. It constitutes some 2% of fission-produced isotopes - 1.6x10^5 curies/kt. Iodine is readily absorbed by the body and concentrated in one small gland, the thyroid.

Strontium-90 is a beta emitter (546 KeV, no gammas) with a half-life of 28.1 years (specific activity 141 curies/g), Sr-89 is a beta emitter (1.463 MeV, gammas very rarely) with a half-life of 52 days (specific activity 28,200 Ci/g). Each of these isotopes constitutes about 3% of total fission isotopes: 190 curies of Sr-90 and 3.8x10^4 curies of Sr-89 per kiloton. Due to their chemical resemblance to calcium these isotopes are absorbed fairly well, and stored in bones. Sr-89 is an important hazard for a year or two after an explosion, but Sr-90 remains a hazard for centuries. Actually most of the injury from Sr-90 is due to its daughter isotope yttrium-90. Y-90 has a half-life of only 64.2 hours, so it decays as fast as it is formed, and emits 2.27 MeV beta particles.

Cesium-137 is a beta and gamma emitter with a half-life of 30.0 years (specific activity 87 Ci/g). Its decay energy is 1.176 MeV; usually divided by 514 KeV beta, 662 KeV gamma. It comprises some 3-3.5% of total fission products - 200 curies/kt. It is the primary long-term gamma emitter hazard from fallout, and remains a hazard for centuries.

Although not important for acute radiation effects, the isotopes carbon-14 and tritium are also of interest because of possible genetic injury. These are not direct fission products. They are produced by the interaction of fission and fusion neutrons with the atmosphere and, in the case of tritium, as a direct product of fusion reactions. Most of the tritium generated by fusion is consumed in the explosion but significant amounts survive. Tritium is also formed by the capture of fast neutrons by nitrogen atoms in the air: N-14 + n -> T + C-12. Carbon-14 in also formed by neutron-nitrogen reactions: N-14 + n -> C-14 + p. Tritium is a very weak beta emitter (18.6 KeV, no gamma) with a half-life of 12.3 years (9700 Ci/g).

Carbon-14 is also a weak beta emitter (156 KeV, no gamma), with a half-life of 5730 years (4.46 Ci/g). Atmospheric testing during the fifties and early sixties produced about 3.4 g of C-14 per kiloton (15.2 curies) for a total release of 1.75 tonnes (7.75x10^6 curies). For comparison, only about 1.2 tonnes of C-14 naturally exists, divided between the atmosphere (1 tonne) and living matter (0.2 tonne). Another 50-80 tonnes is dissolved in the oceans. Due to carbon exchange between the atmosphere and oceans, the half-life of C-14 residing in the atmosphere is only about 6 years. By now the atmospheric concentration has returned to within 1% or so of normal. High levels of C-14 remain in organic material formed during the sixties (in wood, say, or DNA).

Air Bursts and Surface Bursts

It might seem logical that the most destructive way of using a nuclear weapon would be to explode it right in the middle of its target - i.e. ground level. But for most uses this is not true. Generally nuclear weapons are designed to explode above the ground - as air bursts (the point directly below the burst point is called the hypocenter). Surface (and sub-surface) bursts can be used for special purposes.

Air Bursts

When an explosion occurs it sends out a shock wave like an expanding soap bubble. If the explosion occurs above the ground the bubble expands and when it reaches the ground it is reflected - i.e. the shock front bounces off the ground to form a second shock wave travelling behind the first. This second shock wave travels faster than the first, or direct, shock wave since it is travelling through air already moving at high speed due to the passage of the direct wave. The reflected shock wave tends to overtake the direct shock wave and when it does they combine to form a single reinforced wave.

This is called the Mach Effect, and produces a skirt around the base of the shock wave bubble where the two shock waves have combined. This skirt sweeps outward as an expanding circle along the ground with an amplified effect compared to the single shock wave produced by a ground burst.

The higher the burst altitude, the weaker the shock wave is when it first reaches the ground. On the other hand, the shock wave will also affect a larger area. Air bursts therefore reduce the peak intensity of the shock wave, but increase the area over which the blast is felt. For a given explosion yield, and a given blast pressure, there is a unique burst altitude at which the area subjected to that pressure is maximized. This is called the optimum burst height for that yield and pressure.

All targets have some level of vulnerability to blast effects. When some threshold of blast pressure is reached the target is completely destroyed. Subjecting the target to pressures higher than that accomplishes nothing. By selecting an appropriate burst height, an air burst can destroy a much larger area for most targets than can surface bursts.

The Mach Effect enhances shock waves with pressures below 50 psi. At or above this pressure the effect provides very little enhancement, so air bursts have little advantage if very high blast pressures are desired.

An additional effect of air bursts is that thermal radiation is also distributed in a more damaging fashion. Since the fireball is formed above the earth, the radiation arrives at a steeper angle and is less likely to be blocked by intervening obstacles and low altitude haze.

Surface Bursts

Surface bursts are useful if local fallout is desired, or if the blast is intended to destroy a buried or very hard structure like a missile silo or a dam. Shock waves are transmitted through the soil more effectively if the bomb is exploded in immediate contact with it, so ground bursts would be used for destroying buried command centers and the like. Some targets, like earth-fill dams, require actual cratering to be destroyed and would be ground burst targets.

Sub-Surface Bursts

Exploding a bomb below ground level can be even more effective for producing craters and destroying buried structures. It can also eliminate thermal radiation and reduce the range of blast effects substantially. The problem, of course is getting the bomb underground. Earth-penetrating bombs have been developed that can punch over one hundred feet into the earth.

Electromagnetic Effects

The high temperatures and energetic radiation produced by nuclear explosions also produce large amounts of ionized (electrically charged) matter which is present immediately after the explosion. Under the right conditions, intense currents and electromagnetic fields can be produced, generically called EMP (Electromagnetic Pulse), that are felt at long distances. Living organisms are impervious to these effects, but electrical and electronic equipment can be temporarily or permanently disabled by them. Ionized gases can also block short wavelength radio and radar signals (fireball blackout) for extended periods.

The occurrence of EMP is strongly dependent on the altitude of burst. It can be significant for surface or low altitude bursts (below 4,000 m); it is very significant for high altitude bursts (above 30,000 m); but it is not significant for altitudes between these extremes. This is because EMP is generated by the asymmetric absorption of instantaneous gamma rays produced by the explosion. At intermediate altitudes the air absorbs these rays fairly uniformly and does not generate long range electromagnetic disturbances.

The formation EMP begins with the very intense, but very short burst of gamma rays caused by the nuclear reactions in the bomb. About 0.3% of the bomb's energy is in this pulse, but it lasts for only 10 nanoseconds or so. These gamma rays collide with electrons in air molecules, and eject the electrons at high energies through a process called Compton scattering. These energetic electrons in turn knock other electrons loose, and create a cascade effect that produces some 30,000 electrons for every original gamma ray.

In low altitude explosions the electrons, being very light, move much more quickly than the ionized atoms they are removed from and diffuse away from the region where they are formed. This creates a very strong electric field which peaks in intensity at 10 nanoseconds. The gamma rays emitted downward however are absorbed by the ground which prevents charge separation from occurring. This creates a very strong vertical electric current which generates intense electromagnetic emissions over a wide frequency range (up to 100 MHZ) that emanate mostly horizontally. At the same time, the earth acts as a conductor allowing the electrons to flow back toward the burst point where the positive ions are concentrated. This produces a strong magnetic field along the ground. Although only about 3x10^-10 of the total explosion energy is radiated as EMP in a ground burst (10^6 joules for 1 Mt bomb), it is concentrated in a very short pulse. The charge separation persists for only a few tens of microseconds, making the emission power some 100 gigawatts. The field strengths for ground bursts are high only in the immediate vicinity of the explosion. For smaller bombs they aren't very important because they are strong only where the destruction is intense anyway. With increasing yields, they reach farther from the zone of intense destruction. With a 1 Mt bomb, they remain significant out to the 2 psi overpressure zone (5 miles).

High altitude explosions produce EMPs that are dramatically more destructive. About 3x10^-5 of the bomb's total energy goes into EMP in this case, 10^11 joules for a 1 Mt bomb. EMP is formed in high altitude explosions when the downwardly directed gamma rays encounter denser layers of air below. A pancake shaped ionization region is formed below the bomb. The zone can extend all the way to the horizon, to 2500 km for an explosion at an altitude of 500 km. The ionization zone is up to 80 km thick at the center. The Earth's magnetic field causes the electrons in this layer to spiral as they travel, creating a powerful downward directed electromagnetic pulse lasting a few microseconds. A strong vertical electrical field (20-50 KV/m) is also generated between the Earth's surface and the ionized layer, this field lasts for several minutes until the electrons are recaptured by the air. Although the peak EMP field strengths from high altitude bursts are only 1-10% as intense as the peak ground burst fields, they are nearly constant over the entire Earth's surface under the ionized region.

The effects of these field on electronics is difficult to predict, but can be profound. Enormous induced electric currents are generated in wires, antennas, and metal objects (like missiles, airplanes, and building frames). Commercial electrical grids are immense EMP antennas and would be subjected to voltage surges far exceeding those created by lightning, and over vastly greater areas. Modern VLSI chips are extremely sensitive to voltage surges, and would be burned out by even small leakage currents. Military equipment is generally designed to be resistant to EMP, but realistic tests are very difficult to perform and EMP protection rests on attention to detail. Minor changes in design, incorrect maintenance procedures, poorly fitting parts, loose debris, moisture, and ordinary dirt can all cause elaborate EMP protections to be totally circumvented. It can be expected that a single high yield, high altitude explosion over an industrialized area would cause massive disruption for an indeterminable period, and would cause huge economic damages (all those damaged chips add up).

A separate effect is the ability of the ionized fireball to block radio and radar signals. Like EMP, this effect becomes important with high altitude bursts. Fireball blackout can cause radar to be blocked for tens of seconds to minutes over an area tens of kilometers across. High frequency radio can be disrupted over hundreds to thousands of kilometers for minutes to hours depending on exact conditions.

Mechanisms of Damage and Injury

The different mechanisms are discussed individually, but it should be no surprise that in combination they often accentuate the harm caused by each other. I will discuss such combined effects wherever appropriate.

Thermal Damage and Incendiary Effects

Thermal damage from nuclear explosions arises from the intense thermal (heat) radiation produced by the fireball. The thermal radiation (visible and infrared light) falls on exposed surfaces and is wholly or partly absorbed. The radiation lasts from about a tenth of a second, to several seconds depending on bomb yield (it is longer for larger bombs). During that time its intensity can exceed 1000 watts/cm^2 (the maximum intensity of direct sunlight is 0.14 watts/cm^2). For a rough comparison, the effect produced is similar to direct exposure to the flame of an acetylene torch.

The heat is absorbed by the opaque surface layer of the material on which it falls, which is usually a fraction of a millimeter thick. Naturally dark materials absorb more heat than light colored or reflective ones. The heat is absorbed much faster than it can be carried down into the material through conduction, or removed by reradiation or convection, so very high temperatures are produced in this layer almost instantly. Surface temperatures can exceed 1000 degrees C close to the fireball. Such temperatures can cause dramatic changes to the material affected, but they do not penetrate in very far.

More total energy is required to inflict a given level of damage for a larger bomb than a smaller one since the heat is emitted over a longer period of time, but this is more than compensated for by the increased thermal output. The thermal damage for a larger bomb also penetrates further due to the longer exposure.

Thermal radiation damage depends very strongly on weather conditions. Cloud cover, smoke, or other obscuring material in the air can considerably reduce effective damage ranges over clear air conditions.

For all practical purposes, the emission of thermal radiation by a bomb is complete by the time the shock wave arrives. Regardless of yield, this generalization is only violated in the area of total destruction around a nuclear explosion where 100% mortality would result from any one of the three damage effects.

Incendiary effects refer to anything that contributes to the occurrence of fires after the explosion, which is a combination of the effects of thermal radiation and blast.

Thermal Injury

First degree flash burns are not serious, no tissue destruction occurs. They are characterized by immediate pain, followed by reddening of the skin. Pain and sensitivity continues for some minutes or hours, after which the affected skin returns to normal without further incident.

Second degree burns cause damage to the underlying dermal tissue, killing some portion of it. Pain and redness is followed by blistering within a few hours as fluids collect between the epidermis and damaged tissue. Sufficient tissue remains intact however to regenerate and heal the burned area quickly, usually without scarring. Broken blisters provide possible infection sites prior to healing.

Third degree burns cause tissue death all the way through the skin, including the stem cells required to regenerate skin tissue. The only way a 3rd degree burn can heal is by skin regrowth from the edges, a slow process that usually results in scarring, unless skin grafts are used. Before healing 3rd degree burns present serious risk of infection, and can cause serious fluid loss. A 3rd degree burn over 25% of the body (or more) will typically precipitate shock in minutes, which itself requires prompt medical attention.

Even more serious burns are possible, which have been classified as fourth (even fifth) degree burns. These burns destroy tissue below the skin: muscle, connective tissue etc. They can be caused by thermal radiation exposures substantially in excess of those in the table for 3rd degree burns. Many people close to the hypocenter of the Hiroshima bomb suffered these types of burns. In the immediate vicinity of ground zero the thermal radiation exposure was 100 c/cm^2, some fifteen times the exposure required for 3rd degree burns, most of it within the first 0.3 seconds (which was the arrival time of the blast wave). This is sufficient to cause exposed flesh to flash into steam, flaying exposed body areas to the bone.

At the limit of the range for 3rd degree burns, the time lapse between suffering burns and being hit by the blast wave varies from a few seconds for low kiloton explosions to a minute of so for high megaton yields.

Incendiary Effects

Despite the extreme intensity of thermal radiation, and the extraordinary surface temperatures that occur, it has less incendiary effect than might be supposed. This is mostly due to its short duration, and the shallow penetration of heat into affected materials. The extreme heating can cause pyrolysis (the charring of organic material, with the release of combustible gases), and momentary ignition, but it is rarely sufficient to cause self-sustained combustion. This occurs only with tinder-like, or dark, easily flammable materials: dry leaves, grass, old newspaper, thin dark flammable fabrics, tar paper, etc. The incendiary effect of the thermal pulse is also substantially affected by the later arrival of the blast wave, which usually blows out any flames that have already been kindled. Smoldering material can cause reignition later however.

The major incendiary effect of nuclear explosions is caused by the blast wave. Collapsed structures are much more vulnerable to fire than intact ones. The blast reduces many structures to piles of kindling, the many gaps opened in roofs and walls act as chimneys, gas lines are broken open, storage tanks for flammable materials are ruptured. The primary ignition sources appear to be flames and pilot lights in heating appliances (furnaces, water heaters, stoves, ovens, etc.). Smoldering material from the thermal pulse can be very effective at igniting leaking gas.

Although the ignition sources are probably widely scattered a number of factors promote their spread into mass fires. The complete suppression of fire fighting efforts is extremely important. Another is that the blast scatters combustible material across fire breaks that normally exist (streets, yards, fire lanes, etc.).

The effectiveness of building collapse, accompanied by the disruption of fire fighting, in creating mass fires can be seen in the San Francisco earthquake (1906), the Tokyo-Yokahama earthquake (1923), and the recent Kobe earthquake (1995). In these disasters there was no thermal radiation to ignite fires, and the scattering of combustible materials did not occur, but huge fires still resulted. In San Francisco and Tokyo-Yokohama these fires were responsible for most of the destruction that occurred.

In Hiroshima the fires developed into a true firestorm. This is an extremely intense fire that produces a rapidly rising column of hot air over the fire area, in turn powerful winds are generated which blow in to the fire area, fanning and feeding the flames. The fires continue until all combustible material is exhausted. Firestorms develop from multiple ignition sources spread over a wide area that create fires which coalesce into one large fire. Temperatures in firestorm areas can reach many hundreds of degrees, carbon monoxide reaches lethal levels, few people who see the interior of a firestorm live to tell about it. Firestorms can melt roads, cars, and glass. They can boil water in lakes and rivers, and cook people to death in buried bomb shelters. The in-blowing winds can reach gale force, but they also prevent the spread of the fires outside of the area in which the firestorm initially develops. The firestorm in Hiroshima began only about 20 minutes after the bombing.

Nagasaki did not have a firestorm, instead it had a type of mass fire called a conflagration. This is a less intense type of fire, it develops and burns more slowly. A conflagration can begin in multiple locations, or only one. Conflagrations can spread considerable distances from their origins. The fires at Nagasaki took about 2 hours to become well established, and lasted 4-5 hours.

Eye Injury

The brightness and thermal output of a nuclear explosion presents an obvious source of injury to the eye. Injury to the cornea through surface heating, and injury to the retina are both possible risks. Surprisingly, very few cases of injury were noted in Japan. A number of factors acted to reduce the risk. First, eye injury occurs when vision is directed towards the fireball. People spend relatively little time looking up at the sky so only a very small portion of the population would have their eyes directed at the fireball at the time of burst. Second, since the bomb exploded in bright daylight the eye pupil would be expected to be small.

About 4% of the population within the 3rd degree burn zone at Hiroshima reported keratitis, pain and inflammation of the cornea, which lasted several hours to several days. No other corneal damage was noted.

The most common eye injury was flashblindness, a temporary condition in which the visual pigment of retina is bleached out by the intense light. Vision is completely recovered as the pigment is regenerated, a process that takes several seconds to several minutes. This can cause serious problems though in carrying out emergency actions, like taking cover from the oncoming blast wave.

Retinal injury is the most far reaching injury effect of nuclear explosions, but it is relatively rare since the eye must be looking directly at the detonation. Retinal injury results from burns in the area of the retina where the fireball image is focused. The brightness per unit area of a fireball does not diminish with distance (except for the effects of haze), the apparent fireball size simply gets smaller. Retinal injury can thus occur at any distance at which the fireball is visible, though the affected area of the retina gets smaller as range increases. The risk of injury is greater at night since the pupil is dialated and admits more light. For explosions in the atmosphere of 100 kt and up, the blink reflex protects the retina from much of the light.

Blast Damage and Injury

Blast damage is caused by the arrival of the shock wave created by the nuclear explosion. Shock waves travel faster than sound, and cause a virtually instantaneous jump in pressure at the shock front. The air immediately behind the shock front is accelerated to high velocities and creates a powerful wind. The wind in turn, creates dynamic pressure against the side of objects facing the blast. The combination of the pressure jump (called the overpressure)and the dynamic pressure causes blast damage.

Both the overpressure and dynamic pressure jump immediately to their peak values when the shock wave arrives. They then decay over a period ranging from a few tenths of a second to several seconds, depending on the strength of the blast and the yield. Following the this there is a longer period of weaker negative pressure before the atmospheric conditions return to normal. The negative pressure has little significance as far as causing damage or injury is concerned. A given pressure is more destructive from a larger bomb, due its longer duration.

The is a definite relationship between the overpressure and the dynamic pressure. The overpressure and dynamic pressure are equal at 70 psi, and the wind speed is 1.5 times the speed of sound. Below an overpressure of 70 psi, the dynamic pressure is less than the overpressure; above 70 psi it exceeds the overpressure. Since the relationship is fixed it is convenient to use the overpressure alone as a yardstick for measuring blast effects. At 20 psi overpressure the wind speed is still 500 mph, higher than any tornado wind.

As a general guide, city areas are completely destroyed (with massive loss of life) by overpressures of 5 psi, with heavy damage extending out at least to the 3 psi contour. The dynamic pressure is much less than the overpressure at blast intensities relevant for urban damage, although at 5 psi the wind speed is still 162 mph - close to the peak wind speeds of the most intense hurricanes.

Humans are actually quite resistant to the direct effect of overpressure. Pressures of over 40 psi are required before lethal effects are noted. This pressure resistance makes it possible for unprotected submarine crews to escape from emergency escape locks at depths as great as one hundred feet (the record for successful escape is actually an astonishing 600 feet, representing a pressure of 300 psi). Loss of eardrums can occur, but this is not a life threatening injury.

The danger from overpressure comes from the collapse of buildings that are generally not as resistant. The violent implosion of windows and walls creates a hail of deadly missiles, and the collapse of the structure above can crush or suffocate those caught inside.

The dynamic pressure causes can cause injury by hurling large numbers of objects at high speed. Urban areas contain many objects that can become airborne, and the destruction of buildings generates many more. Serious injury or death can also occur from impact after being thrown through the air.

Blast effects are most dangerous in built-up areas due to the large amounts of projectiles created, and the presence of obstacles to be hurled against.


TOPICS: Education; History; Miscellaneous; Science
KEYWORDS: nuclearweapons; stringtheory
Navigation: use the links below to view more comments.
first 1-2021-4041-49 next last
From one of the first websites I ever visited.

A fairly easy read for students.

Much, much more at the link.

1 posted on 04/20/2008 8:05:40 PM PDT by primeval patriot
[ Post Reply | Private Reply | View Replies]

To: primeval patriot

Great catch.

Have been to Chernobyl twice as a journalist and can tell you, this was very well written.


2 posted on 04/20/2008 8:24:38 PM PDT by MindBender26 (Leftists stop arguing when they see your patriotism, your logic, your CAR-15 and your block of C4.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: primeval patriot

Cool. Nukes 101: Everything you ever wanted to know and more about nuclear explosions. (I mean the ones caused by bombs, not Hillary after her bean burrito ;) )


3 posted on 04/20/2008 8:45:42 PM PDT by G8 Diplomat
[ Post Reply | Private Reply | To 1 | View Replies]

To: primeval patriot
I'm not a student,just curious Thanks in advance.
4 posted on 04/20/2008 8:52:03 PM PDT by OeOeO
[ Post Reply | Private Reply | To 1 | View Replies]

To: G8 Diplomat

One nuclear bomb can ruin your whole day.


5 posted on 04/20/2008 8:57:58 PM PDT by dfwgator (11+7+15=3 Heismans)
[ Post Reply | Private Reply | To 3 | View Replies]

To: primeval patriot
There's a reason why they chose air burst over surface burst for most nuclear attacks--air burst causes more destruction over a wider area, necessary for attacking cities, above-ground industrial sites and large military formations. Ground burst (or very near ground burst where the warhead detonates maybe 100-200 meters above the ground) is used primarily to destroy fixed ICBM missile silos and underground command centers like the old SAC headquarters near Omaha, NE.

Interestingly enough, the now-mothballed NORAD command center at Cheyenne Mountain near Colorado Springs, CO would likely survive even a very close hit from a 1 MT nuclear blast, since it was built so deeply into the mountain and the fact the command center had extensive shock-proofing to resist the shock wave of a nuclear blast. That's why the Russians developed the gigantic R-36M (SS-18) missile that could deliver a 20 MT nuclear warhead--it was specifically designed to take out the Cheyenne Mountain facility.

6 posted on 04/20/2008 8:58:21 PM PDT by RayChuang88
[ Post Reply | Private Reply | To 1 | View Replies]

To: dfwgator

Being too close to a detonating 500 pound conventional bomb wouldn’t really be much better.


7 posted on 04/20/2008 9:05:32 PM PDT by Grizzled Bear ("Does not play well with others.")
[ Post Reply | Private Reply | To 5 | View Replies]

To: Grizzled Bear

I’ve done a lot of explosive testings and the one peice of advice I give people when they ask me about “how far should I be” and such is... When it goes off be somewhere else.


8 posted on 04/20/2008 9:11:03 PM PDT by CougarGA7 (Wisdom comes with age, but sometimes age comes alone.)
[ Post Reply | Private Reply | To 7 | View Replies]

To: dfwgator
One nuclear bomb can ruin your whole day.

NOT if said bomb is delivered on the target of your choice, instead of being delivered on YOU.
9 posted on 04/20/2008 9:16:23 PM PDT by mkjessup (Jimmy Carter is the skidmark in the panties of American history.)
[ Post Reply | Private Reply | To 5 | View Replies]

To: CougarGA7

When your demolitions expert says “Uh oh!” Run!!!


10 posted on 04/20/2008 9:18:41 PM PDT by Grizzled Bear ("Does not play well with others.")
[ Post Reply | Private Reply | To 8 | View Replies]

To: CougarGA7
I’ve done a lot of explosive testings and the one peice of advice I give people when they ask me about “how far should I be” and such is... When it goes off be somewhere else.

"Doctor, it hurts when I do this..."

11 posted on 04/20/2008 9:19:15 PM PDT by martin_fierro (< |:)~)
[ Post Reply | Private Reply | To 8 | View Replies]

To: primeval patriot

Bump for a later long read.


12 posted on 04/20/2008 9:20:48 PM PDT by TheLion
[ Post Reply | Private Reply | To 1 | View Replies]

To: Grizzled Bear
You never hear an EOD say oops....because if you are within in earshot, you're dead.


13 posted on 04/20/2008 9:21:31 PM PDT by CougarGA7 (Wisdom comes with age, but sometimes age comes alone.)
[ Post Reply | Private Reply | To 10 | View Replies]

To: martin_fierro

then stop doing that.


14 posted on 04/20/2008 9:22:33 PM PDT by CougarGA7 (Wisdom comes with age, but sometimes age comes alone.)
[ Post Reply | Private Reply | To 11 | View Replies]

To: OeOeO

Generally any element heavier than iron releases more energy if you split it than it contains through nuclear binding. U-235 is somewhat unique however in that it releases more energy than is required to split it, and can sustain a chain reaction. If it wasn’t for the unusual properties of U-235, it’s likely we would not have any form of nuclear power today, controlled or uncontrolled. U-235 must be separated from its non-fisionable isotope U-238 (depleted uranium) before it can be usable as fuel. Plutonium is entirely man-made, due to its short half-life, and requires U-235 to make it (as a byproduct), but has similar properties. Nuclear fusion, on the other hand, releases energy when atoms are combined, not split. The nucear binding curve (google it) determines at what atomic weight atoms loose or gain energy as you split/combine them. The element iron happens to be the center point.


15 posted on 04/20/2008 9:24:30 PM PDT by Telepathic Intruder
[ Post Reply | Private Reply | To 4 | View Replies]

To: Telepathic Intruder

Thanks


16 posted on 04/20/2008 9:26:58 PM PDT by OeOeO
[ Post Reply | Private Reply | To 15 | View Replies]

To: Telepathic Intruder; OeOeO

Though I’m no expert on nuclear fission I would imagine that any atom can be split including Hydrogen (though then we would get into the components of protons and such which is above my pay grade). The question would be is it worthwile as far as yeild to do that.

I do know this. When we did our surface nuclear tests in Nevada it was pretty hard on sheep flocks in Utah. They were getting exposed to a radioactive form of Iodine (which was very bad) as well as a radioactive form of Ceisium (which gets mistaken for Calcium and stored in bones which is very bad long term). Niether of these elements are components of a standard atomic or thermonuclear weapon so they had to be created by the blast.


17 posted on 04/20/2008 9:31:40 PM PDT by CougarGA7 (Wisdom comes with age, but sometimes age comes alone.)
[ Post Reply | Private Reply | To 15 | View Replies]

To: Telepathic Intruder

Good explanation in #15, though I’m wondering whether Pu-239 is more commonly made from U-235 or rather by a single neutron capture from U-238, and then two subsequent beta decays to make it Z=94?


18 posted on 04/20/2008 9:32:16 PM PDT by Tex_GOP_Cruz
[ Post Reply | Private Reply | To 15 | View Replies]

To: Telepathic Intruder; OeOeO

In reading my own response I noticed that I errored. When I mentioned Ceisium I meant Strontium. May not mean much, but the reason that the radioactive Strontium is mistaken by the body as Calcium is based on being in the same column if the periodic table.


19 posted on 04/20/2008 9:39:00 PM PDT by CougarGA7 (Wisdom comes with age, but sometimes age comes alone.)
[ Post Reply | Private Reply | To 15 | View Replies]

To: RayChuang88
Interestingly enough, the now-mothballed NORAD command center at Cheyenne Mountain near Colorado Springs, CO would likely survive even a very close hit from a 1 MT nuclear blast, since it was built so deeply into the mountain and the fact the command center had extensive shock-proofing to resist the shock wave of a nuclear blast.

Though obviously obsolete, that facility is an engineering marvel! Visited it twice and was quite impressed with the structures (if not the technology which was very disappointing)...

20 posted on 04/20/2008 9:39:11 PM PDT by ExSES (the "bottom-line")
[ Post Reply | Private Reply | To 6 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-4041-49 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson