Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Picking on Einstein
Physics.Org ^ | 01 April 2005 | Staff

Posted on 04/02/2005 7:01:14 PM PST by PatrickHenry

This year marks the 100th anniversary of a revolution in our notions of space and time.

Before 1905, when Albert Einstein published his theory of special relativity, most people believed that space and time were as Sir Isaac Newton described them back in the 17th century: Space was the fixed, unchanging "stage" upon which the great cosmic drama unfolded, and time was the mysterious, universal "clock in the sky."

Even today, people commonly assume that this intuitive sense of space and time is correct. It's not.

Einstein's 1905 paper, along with another one he published in 1915, painted an entirely different and mind-bending picture. Space itself is constantly being warped and curved by the matter and energy moving within it, and time flows at different rates for different observers. Numerous real-world experiments over the last 100 years indicate that, amazingly, Einstein was right.

But scientists today have reason to think that even Einstein's theory isn't the whole story; another revolution seems inevitable.

The reason for doubt is that Einstein's theory is incompatible with quantum mechanics, another pillar of modern physics that describes the odd world of subatomic particles. When the theories are used together, sometimes, their combined equations produce nonsense. This leads scientists to believe that current theories will eventually be replaced by a single, elegant theory that explains all physical phenomena from the subatomic to the cosmic, the so-called "Theory of Everything."

When will the first shots of this physics revolution ring out? Perhaps when Einstein, like Newton before him, is proven wrong -- or at least not quite right.

To hunt for flaws in Einstein's theories, scientists are crafting experiments that can measure the predictions of relativity with ever-greater precision. One such experiment is NASA's Gravity Probe B (GP-B).

According to Einstein, Earth makes a dimple in the spacetime around it -- something like a bowling ball sitting on a sheet of Spandex. Because Earth spins, this "dimple" is twisted into a shallow vortex. Gravity Probe B is orbiting Earth, right now, in search of these distortions.


Image: Newton's fixed space vs. Einstein's flexible spacetime, from the film "Testing Einstein's Universe" by Norbert Bartel.

GP-B senses the distortion of spacetime around our planet using gyroscopes. (There are four of them onboard the spacecraft.) Francis Everitt, principal investigator for GP-B and a professor at Stanford University, explains:

"Gyroscopes moving through curved spacetime will gradually change their direction of spin (i.e. tilt) with respect to the stars. GP-B will measure that tilting motion with extraordinary precision and from that measurement we can calculate the structure of space near the Earth."

Everitt will give a presentation about Gravity Probe B in April at the "Physics for the Third Millennium: II" conference hosted by NASA's Marshall Space Flight Center in Huntsville, Alabama. The conference is part of the World Year of Physics 2005, a United Nations-endorsed series of events to recognize the 100th anniversary of Einstein's seminal work and to raise public awareness of big issues in modern physics.

In addition to giving a status update on GP-B (in short: so far, so good), Everitt plans to explain how GP-B will measure gamma, an important physics variable used by scientists in their quest to go beyond Einstein's relativity. Roughly speaking, gamma corresponds to the curvature of three-dimensional space.

If Einstein's theory matched reality perfectly, gamma ought to be exactly equal to one. Measuring a value for gamma that's even slightly different from one would be the "first shot" that physicists have been waiting for.

"Gamma is the most sensitive way of measuring any possible deviation from Einstein, because it is sensitive to [any kind of unknown field]," says Thibault Damour, a professor at the Institut des Hautes Etudes Scientifiques, France, and an expert in theories that could replace relativity.

In the GP-B experiment, gamma contributes to the slight tilt of the gyroscopes' spin axes, which are expected to drift about 6.6 arcseconds (0.00183 degrees) during the year-long data-gathering phase of the mission. This drift should allow scientists to measure gamma within about 0.01% of its true value -- and perhaps as good as 0.001%, Everitt says.

If gamma turns out to be slightly less than one, it would support the idea that a new force field exists, akin to gravity but much weaker. Physicists call it a "scalar field." This new field is a feature of some candidate Theories of Everything, including string theory. String theory is popular because of its elegance in explaining all known physical phenomena, from the subatomic to the cosmic. The problem is that string theory is very hard to test in the real world, and no experimental evidence of the unique predictions of string theory has yet been found.

"Finding that gamma is slightly less than one would support the idea of a scalar field, and thus could provide some of the first experimental support for string theory," Thibault says.

If gamma turns out to be slightly greater than one, however, it would be "back to the drawing board" for theorists. No existing theories predict that gamma should be larger than one, so physicists would have no idea how to explain such a finding. "Let's just say that every time I ask theorists what it would mean if gamma were larger than one, they change the subject," laughs Everitt, himself an experimentalist.

GP-B might also find that, within the experiment's limits of precision, gamma is equal to one -- just as Einstein predicted. What would that mean? Perhaps the flaw, if it exists, is smaller than GP-B can sense. Or maybe the revolution's first shots will ring out elsewhere. No one knows.

Gravity Probe B is half-way through its one-year mission. One hundred years down, six months to go. Stay tuned for answers.

Gravity Probe B's Home Page.


TOPICS: Culture/Society; Miscellaneous; Philosophy
KEYWORDS: einstein; physics; relativity; science
Navigation: use the links below to view more comments.
first 1-2021-4041-44 next last
Bold and underline fonts added by me.
1 posted on 04/02/2005 7:01:14 PM PST by PatrickHenry
[ Post Reply | Private Reply | View Replies]

To: VadeRetro; Junior; longshadow; RadioAstronomer; Doctor Stochastic; js1138; Shryke; RightWhale; ...
Science Ping! An elite subset of the Evolution list.
See list's description in my freeper homepage. Then FReepmail to be added/dropped.

2 posted on 04/02/2005 7:02:18 PM PST by PatrickHenry (<-- Click on my name. The List-O-Links for evolution threads is at my freeper homepage.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry
And his "teachers" called him "retarded".

I think he got the last laugh on them.

3 posted on 04/02/2005 7:08:39 PM PST by LibKill (Beer is proof that God loves us and wants us to be happy.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry

bump


4 posted on 04/02/2005 7:12:50 PM PST by facedown (Armed in the Heartland)
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry

I came up with this odd idea--

When mathematicians wanted to solve an impossible problem, they invented "i", such that: "an imaginary number is a real number times the positive square root of -1." The subsequent results yeilded amazing observations in many aspects of mathematics.

Why not do the same with physics? Just define a black-box figure (declare some "impossible" equivalence, perhaps?) and don't worry about how it works- just accept the result as true.

(The details of such a thing are well beyond my skills, which are presently stuck at undergraduate standards...)


5 posted on 04/02/2005 7:15:04 PM PST by SteveMcKing
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry
"Gyroscopes moving through curved spacetime will gradually change their direction of spin (i.e. tilt) with respect to the stars.

Why would a gyroscope change its direction of spin?

6 posted on 04/02/2005 7:15:32 PM PST by stripes1776
[ Post Reply | Private Reply | To 1 | View Replies]

To: stripes1776

The spin would not change, only it's direction in relation to the stars.


7 posted on 04/02/2005 7:19:15 PM PST by TheLion
[ Post Reply | Private Reply | To 6 | View Replies]

To: PatrickHenry

Now that is fascinating. And I will be nice.


8 posted on 04/02/2005 7:20:22 PM PST by Tench_Coxe
[ Post Reply | Private Reply | To 1 | View Replies]

To: PatrickHenry

I still think Hawking was right. Einstein did not prove Newton wrong, he proved him incomplete. The next great breakthrough will not prove Einstein wrong, it will prove him incomplete. The next breakthrough will build on his work, not eradicate it.


9 posted on 04/02/2005 7:21:26 PM PST by Richard Kimball (It was a joke. You know, humor. Like the funny kind. Only different.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: stripes1776
Why would a gyroscope change its direction of spin?

It's a Democrat.

10 posted on 04/02/2005 7:22:38 PM PST by AndrewC (All these moments are tossed in lime, like trains in the rear.)
[ Post Reply | Private Reply | To 6 | View Replies]

To: stripes1776

I wonder if any new object in space, little as it may be, such as us, causes a littler 'dimple' in the fabric creating a much smaller distortional vortex of spacetime.


11 posted on 04/02/2005 7:24:15 PM PST by Beowulf9
[ Post Reply | Private Reply | To 6 | View Replies]

To: SteveMcKing
Why not do the same with physics? Just define a black-box figure (declare some "impossible" equivalence, perhaps?) and don't worry about how it works- just accept the result as true.

I was taught that the Universal Fudge Factor was the square root of 2. :-)

12 posted on 04/02/2005 7:24:46 PM PST by jennyp (WHAT I'M READING NOW: Mn17#mg 5gu2Ee 0%Ae by Howard & LeBlanc)
[ Post Reply | Private Reply | To 5 | View Replies]

To: TheLion
The spin would not change, only it's direction in relation to the stars.

Yes, I understand that the spin is not changing, only its direction, that is to say the k component of the vector perpendicular to the rotational motion. But what causes the direction to change?

13 posted on 04/02/2005 7:29:07 PM PST by stripes1776
[ Post Reply | Private Reply | To 7 | View Replies]

To: SteveMcKing
Why not do the same with physics? Just define a black-box figure (declare some "impossible" equivalence, perhaps?) and don't worry about how it works- just accept the result as true.

That's essentially what Einstein did: he declared that the velocity of light was the same regardless of conditions and then jiggered the universe so it would be.

My problem is that I can't make the 'elevator experiment' work the way it seems to work for everybody else: I always come up with the notion that the scientists inside the elevator car would have no trouble at all distinguishing between acceleration due to changes in velocity and acceleration due to gravity.

14 posted on 04/02/2005 7:31:28 PM PST by Grut
[ Post Reply | Private Reply | To 5 | View Replies]

To: AndrewC
It's a Democrat.

LOL. The best explanation I have heard so far.

15 posted on 04/02/2005 7:33:03 PM PST by stripes1776
[ Post Reply | Private Reply | To 10 | View Replies]

To: PatrickHenry
If you want to watch a TV show (online) about Einstein and the birth of string theory, go to The Elegant Universe.

It's three hours, all online. I've been watching it with my homeschooled six-year old. (I have a hunch he understands more than I do :).

16 posted on 04/02/2005 7:33:35 PM PST by Izzy Dunne (Hello, I'm a TAGLINE virus. Please help me spread by copying me into YOUR tag line.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: stripes1776

I think the direction would only change if space is curved and that is what any change will show. The direction of the gyroscopes doesn't change....only a change in direction relative to the stars, based on any curvature found.

Hope this makes some sense.


17 posted on 04/02/2005 7:37:50 PM PST by TheLion
[ Post Reply | Private Reply | To 13 | View Replies]

To: Beowulf9
I wonder if any new object in space, little as it may be, such as us, causes a littler 'dimple' in the fabric creating a much smaller distortional vortex of spacetime.

Interesting question. I do know that all mass has gravity. When we fall down we see and feel the effects of the gravity of the earth on us. But our gravity also pulls on the earth and the earth moves due to our gravity, although the movement is so small that it is neglibible.

So you may be onto something, althought the effect may be so small that it is also negligible.

18 posted on 04/02/2005 7:39:54 PM PST by stripes1776
[ Post Reply | Private Reply | To 11 | View Replies]

To: TheLion
The direction of the gyroscopes doesn't change....only a change in direction relative to the stars, based on any curvature found. Hope this makes some sense.

How do you define your coordinate system to measure direction if space is changing.

19 posted on 04/02/2005 7:44:47 PM PST by stripes1776
[ Post Reply | Private Reply | To 17 | View Replies]

To: AndrewC
Why would a gyroscope change its direction of spin?

It's a Democrat.

It's a Creationist, moving the goalposts one more time.

20 posted on 04/02/2005 7:54:44 PM PST by balrog666 (A myth by any other name is still inane.)
[ Post Reply | Private Reply | To 10 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-4041-44 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson