Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Quantum cryptography can go the distance
Nature News ^ | 27 August 2008 | Geoff Brumfiel

Posted on 08/27/2008 9:41:11 PM PDT by neverdem

Proof-of-concept system could lead to ultra-secure international communication.


Entangled photons of light could help to create ultra-secure communication systems.
Punhstock

Physicists have built a communication network, secured by quantum cryptography, that could one day work on a global scale.

Quantum cryptography scrambles data using the laws of quantum mechanics, relying on a concept known as entanglement to ensure absolutely security. Entanglement allows two particles to be quantum-mechanically connected even when they are physically separated. Although the specific condition of either particle cannot be precisely known, taking measurements of one will instantly tell you something about the other.

The trick can't be used to actually send information, because each particle's condition is random until it is measured. But entanglement can be used for encrypting data if a sender and a receiver make measurements on a number of entangled particles and then compare their results.

After performing the measurements, they use their data to generate a quantum mechanical 'key' that can be used to share top-secret information. Any eavesdropper will disrupt the entanglement, ruining the key and causing the sender and receiver to break off their communication.

Quantum cryptographic networks usually work by entangling two light particles, or photons. But individual photons can only travel so far down a fibre optic line before they are disrupted, says Yu-Ao Chen, a physicist at the University of Heidelberg in Germany. Although some experiments have managed to send entangled photons over distances of around 100 kilometres using bulky telescopes, networks based on commercial optic fibres have so far been limited to just a few kilometres in length. "It was impossible to go the distance," Chen says.

Long-distance runaround Now Chen and his colleagues have found a way to extend the entangled photons' reach1. Instead of photons, communication begins with two clouds of rubidium atoms: one by the sender and the other acting as a staging post on the way to the receiver. Stimulating these atoms makes them each release a photon, which remains entangled with its parent cloud.

When the photons arrive at a central point, the physicists can measure them in a way that entangles their parent clouds together, a process known as entanglement swapping.

The clouds are relatively stable, so the experiment can be repeated with a third cloud that is further along the path towards the ultimate destination. This ultimately leaves the first cloud entangled with the third.

By creating a long chain of clouds and repeating the process, the group can, in theory, reach a situation in which the two clouds at each end of the chain are tied together. Sender and receiver can then measure their clouds and build their key in a manner similar to that of a normal quantum cryptographic system, but over a much longer range.

The experiment was conducted with just two clouds of atoms over a distance of 300 metres, much less than that of existing single-photon systems. With current technology, the scheme would require atom clouds every 10 kilometres or so, Chen says. But, in principal, there is no reason why it could not be extended to a global scale.

Despite the difficulties, quantum cryptographic networks are already on the cusp of commercialization. Private companies have been able to develop multi-node networks that can operate over city-scale distances, and, in 2007, the Swiss city of Geneva used quantum cryptography during its elections.

The latest findings are a "proof of principle experiment", says Marek Zukowski, a physicist at the University of Gdansk in Poland who did not work on the project. "But they are at the cutting edge of research in quantum information," he adds. "It shows that development of the technology may be very fruitful."

References Yuan, Z.-S. et al. Nature 454, 1098–1101 (2008)


TOPICS: Culture/Society; Foreign Affairs; News/Current Events; Technical
KEYWORDS: cryptography; physics; quantumcryptography; science

1 posted on 08/27/2008 9:41:11 PM PDT by neverdem
[ Post Reply | Private Reply | View Replies]

To: neverdem

Look for none of your phone calls to stay connected. (disrutpions by eavesdroppers breaks communication)


2 posted on 08/27/2008 10:01:54 PM PDT by Secret Agent Man (I'd like to tell you, but then I'd have to kill you.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem; Egon

It sounds like Orson Scott Card’s description of how the Ansible operates. (Children of the Mind - #4 in the Ender series)


3 posted on 08/27/2008 10:15:54 PM PDT by RhoTheta ("I'm from the government, and I'm here to help you." NOT!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

“Instead of photons, communication begins with two clouds of rubidium atoms: one by the sender and the other acting as a staging post on the way to the receiver. Stimulating these atoms makes them each release a photon, which remains entangled with its parent cloud.”

Doesn’t that create a bunch of weak links in the chain?


4 posted on 08/27/2008 11:26:17 PM PDT by james500
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem
So, if you could tap or disturb all lines of communication you could disable all communications without really needing to ease drop.
5 posted on 08/28/2008 1:44:12 AM PDT by Herakles (Diversity is code word for anti-white racism)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Jeff Head; JACKRUSSELL
So, if you could tap or disturb all lines of communication you could disable all communications without really needing to ease drop.

Like, *PING*, dudes.

Look for the Chinese to exploit this against our military in time of war.

6 posted on 08/28/2008 3:15:58 AM PDT by grey_whiskers (The opinions are solely those of the author and are subject to change without notice.)
[ Post Reply | Private Reply | To 5 | View Replies]

To: Herakles

Yeah that was my thought too. If you can’t intercept, disruption is the next best thing.


7 posted on 08/28/2008 3:32:46 AM PDT by rbg81 (DRAIN THE SWAMP!!)
[ Post Reply | Private Reply | To 5 | View Replies]

To: neverdem
This is interesting stuff. Quantum mechanics is being used to make an absolutely secure communications system. At the same time QM principles are being applied to the development of quantum computers that will be able to factor large numbers and, when developed, will be used to break the codes in common use today.

We do live in interesting times.

8 posted on 08/28/2008 5:21:41 AM PDT by InterceptPoint
[ Post Reply | Private Reply | To 1 | View Replies]

To: RhoTheta
I thought of the ansible also. But this seems to argue against it:

The trick can't be used to actually send information, because each particle's condition is random until it is measured.

9 posted on 08/28/2008 5:25:13 AM PDT by ClearCase_guy (Et si omnes ego non)
[ Post Reply | Private Reply | To 3 | View Replies]

To: RhoTheta

LOL!


10 posted on 08/28/2008 5:30:10 AM PDT by <1/1,000,000th%
[ Post Reply | Private Reply | To 3 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson