Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Astronomers Spy Swarms of Black Holes at Our Galaxy's Core
Scientific American ^ | 4/4/18 | Lee Billings

Posted on 04/04/2018 12:39:19 PM PDT by LibWhacker

Anticipated but never before seen, the existence of tens of thousands of these dark objects at the galactic center could have far-reaching implications for astrophysics

An artist's rendering of the Milky Way's core, with a supermassive black hole at its center. Scientists have discovered what appear to be twelve smaller black holes orbiting our galaxy's central giant. Each is thought to actually be a binary system composed of a black hole and a low-mass star. Gas siphoned from the star glows in x-rays as it falls into the black holes, allowing them to be seen. Credit: Columbia University

For the first time astronomers have glimpsed a long-predicted population of black holes lurking at the heart of the Milky Way.

Scientists already knew our galaxy’s core holds a supermassive black hole weighing millions of times more than our sun, and that this great beast is enveloped by a diverse entourage of lesser companions. Trapped in its gravitational clutches, run-of-the-mill stars whip around this gargantuan black hole like fireflies in a hurricane. So, too, do astrophysical exotica such as neutron stars and white dwarfs—the remnants left by normal stars when they die. Presumably black holes should be there as well, either born on the galactic center’s doorstep from the deaths of massive stars or arriving via migration from farther out.

Such black holes should each weigh 10 to 20 times more than our sun. That bulk would make them behave a bit like heavy pebbles outpacing fine silt to the watery bottom of a well, jostling through the lighter surrounding stars to reach stable orbits very close to the Milky Way’s core. Since the 1970s theorists studying this process have predicted a galactic center swarming with thousands of black holes bounded by an outer “cusp” beyond which the black holes’ numbers should plummet. But despite their predicted prevalence, these black holes are so dark and quiescent that they have been all but undetectable against the galactic center’s stellar splendor—at least, until now.

Using 12 years of archival data from NASA’s Chandra X-Ray Observatory, a team led by Columbia University astrophysicist Chuck Hailey has found a dozen potential black holes within a few light-years of the Milky Way’s center, well within the gravitational reach of our galaxy’s supermassive black hole. The team speculates these must be the first observational signs of the long-theorized “cusp.” Based on the emissions and spatial distribution of these 12 systems, the team estimates 10,000 to 20,000 of these objects should be swirling around our galaxy’s core, mostly unseen. For perspective, apart from these newfound dozen scientists have only identified about 60 black holes in the entire Milky Way, and all but a few are far from the galactic center. The findings appear in a paper published Wednesday in Nature.

The study appears to vindicate predictions from theorists such as Mark Morris, an astrophysicist at the University of California, Los Angeles, who in 1993 penned a key paper predicting tens of thousands of stellar-mass black holes would form a disk around the galactic center. Across the decades, other theorists tackling the problem have arrived at similar estimates. “There hasn’t ever been much controversy about this idea, because it’s just an inevitable consequence of simple Newtonian dynamics,” Morris says. “The only thing is, it has been really hard to prove.”

“Finding evidence for a large number of black holes at the center of the Milky Way confirms a fundamental and major prediction of galactic dynamics,” Hailey says. “These objects also provide a unique laboratory for learning about how big black holes interact with little ones, because we can’t readily study these processes in other, more distant galaxies.”

Hailey and his team used Chandra data because black holes at the galactic center should be most visible via x-rays, produced when the black holes form a binary system with a low-mass star and feed on their captured companion.

Siphoned off by the black hole’s gravitational pull, the star’s outer layers will pile up outside the black hole’s maw in a spiraling, steadily glowing disk. The intense x-ray emissions from these disks would be exceedingly faint when viewed from Earth’s vicinity, sending only one photon apiece into Chandra’s optics every five or 10 minutes. These weak emissions would also be intermixed with many other x-ray sources from the galactic center. To pin down the nature of their dozen candidates, Hailey’s team plotted their spectral peaks and tracked their activity across time, finding patterns consistent with previous observations of binary black hole emissions elsewhere in the galaxy. The fact there must then be tens of thousands of black holes at the galactic center stems from the notion these objects would only very rarely be accompanied by a star to make them glow—most would remain isolated, invisible singletons.

Morris calls the work “exciting” but notes that due to the very low total numbers of photons used in the analysis, of the dozen putative black holes some might actually merely be statistical flukes produced by coincidentally timed emissions from other sources. Hailey, too, admits that of the dozen sources detected he only feels certain half are black holes—the remaining six, he says, display behavior that could also be explained as emissions from rapidly spinning neutron stars called millisecond pulsars.

Despite such uncertainty, Jordi Miralda-Escudé, an astrophysicist at the University of Barcelona unaffiliated with the work, says the results should have profound implications for future research. “A discovery like this will always have consequences that we cannot presently predict,” he says. “If confirmed, the existence of these black holes suggests similar concentrations should exist in the centers of most galaxies throughout the universe.” Such confirmations could come from perhaps another decade of additional Chandra observations or from studies by Chandra’s proposed successor, a space telescope called Lynx that NASA is presently studying for potential development and launch in the 2020s or 2030s.

Scientists studying gravitational waves would likely benefit the most from further studies of black holes hidden at the Milky Way’s core. Predicted by Einstein more than a century ago, these elusive ripples in spacetime have only recently been observed, and the majority of detections to date have been traced to merging black holes billions of light-years away. Mysteriously, most of these black holes are inconveniently sized, appearing too large to have readily formed directly from dying massive stars. Alternative explanations posit these anomalously massive black holes grew and merged in throngs of stars called globular clusters, but that process can easily require more time than the current age of the universe. “So how do you get these things?” Morris says. “Hundreds of papers have been written already speculating about this. But if you have clusters of black holes at the centers of galaxies, there are mechanisms by which some could rapidly grow, form binaries and merge with each other.”

Regardless of how scientists follow up this discovery, one way or another the result will be “pinning down the number of black holes in the center of a normal galaxy like the Milky Way,” Hailey says. “That will be invaluable, especially for researchers trying to calculate the nature and number of gravitational wave events expected from galaxy cores. All the information astrophysicists need is right there, at the center of our galaxy.”


TOPICS: Astronomy; Science
KEYWORDS: blackholes; core; galactic; milkyway; swarms
Navigation: use the links below to view more comments.
first 1-2021-32 next last

1 posted on 04/04/2018 12:39:20 PM PDT by LibWhacker
[ Post Reply | Private Reply | View Replies]

To: LibWhacker
oooooh. An artists' rendering.

Do they have an artists' rendering of Dark Matter too?

2 posted on 04/04/2018 12:42:56 PM PDT by yesthatjallen
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

We have a black hole right here inside the Beltway as well - Federal budget and so-called Federal Omnibus bill.

Apparently there’s nothing we can do about that one either.


3 posted on 04/04/2018 12:45:06 PM PDT by Paulie (America without Christ is like a Chemistry book without the periodic table.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: yesthatjallen
"Do they have an artists' rendering of Dark Matter too?


4 posted on 04/04/2018 12:47:54 PM PDT by DannyTN
[ Post Reply | Private Reply | To 2 | View Replies]

To: LibWhacker
So that's why the Milky Way looks like a water cyclone as the toilet flushes.
5 posted on 04/04/2018 12:48:06 PM PDT by StAntKnee (Add your own danged sarc tag)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker
Hemorrhoids ?
6 posted on 04/04/2018 12:52:07 PM PDT by buckalfa (I was so much older then, but I'm younger than that now.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker
Here is my rendering of a White Hole...
















Not bad, huh?

7 posted on 04/04/2018 12:53:05 PM PDT by ETL (Obama-Hillary, REAL Russia collusion! Uranium-One Deal, Missile Defense, Nukes. See my FR home page)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker
This scientist dumped SciAM over a decade ago when their leftist "Gorebull Wahruming" idiocy got to be unbearable.

But, even then, SciAM "writers" knew better than to infllate "a dozen" into "Tens of Thousands"... :-{

8 posted on 04/04/2018 12:53:15 PM PDT by TXnMA ("Allah": Satan's current alias; "0bama": Allah's stooge; "Moderate Muslims": Allah's useful idiots.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

Scientists have discovered what appear to be twelve smaller black holes orbiting our galaxy’s central giant. Each is thought to actually be a binary system composed of a black hole and a low-mass star. Gas siphoned from the star glows in x-rays as it falls into the black holes, allowing them to be seen.

...

I guess that means there are many more that can’t be easily seen.


9 posted on 04/04/2018 12:59:49 PM PDT by Moonman62 (Make America Great Again!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: yesthatjallen

A CT scan of your head would do.


10 posted on 04/04/2018 1:01:02 PM PDT by Moonman62 (Make America Great Again!)
[ Post Reply | Private Reply | To 2 | View Replies]

To: All
Here's a white one...


11 posted on 04/04/2018 1:04:47 PM PDT by ETL (Obama-Hillary, REAL Russia collusion! Uranium-One Deal, Missile Defense, Nukes. See my FR home page)
[ Post Reply | Private Reply | To 7 | View Replies]

To: Moonman62

Yep, these 10 or 12 individual black holes must be the biggest and the brightest of the other 10,000 - 20,000. What a hellish place that must be. Better that they all sink to the center than mill around out here with us!


12 posted on 04/04/2018 1:07:52 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 9 | View Replies]

To: yesthatjallen
Do they have an artists' rendering of Dark Matter too?
Yes, but the show was canceled ...

13 posted on 04/04/2018 1:08:28 PM PDT by PIF (They came for me and mine ... now it is your turn ...)
[ Post Reply | Private Reply | To 2 | View Replies]

To: Moonman62

lol


14 posted on 04/04/2018 1:08:56 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 10 | View Replies]

To: LibWhacker

There’s a hole in the bottom of the Galaxy..............


15 posted on 04/04/2018 1:09:29 PM PDT by Red Badger (The people who call Trump a tyrant are the same people who want the president to confiscate weapons.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: TXnMA

When you read the article (you did, right?), it said that ‘singleton’ binary black holes are the ones with accretion discs and thus detectable. The ratio of singleton to undetectable isn’t known, but it doesn’t seem unreasonable for there to be a hell of a lot more undetectable black holes that aren’t presently ‘feeding.’ Tens of thousands? I don’t know. Perhaps you have a more accurate number.


16 posted on 04/04/2018 1:12:10 PM PDT by sparklite2 (See more at Sparklite Times)
[ Post Reply | Private Reply | To 8 | View Replies]

To: LibWhacker
these 10 or 12 individual black holes must be...10,000 - 20,000

Any more than that, and risk the galaxy tipping over.

17 posted on 04/04/2018 1:12:45 PM PDT by C210N (Republicans sign check fronts; 'Rats sign check backs.)
[ Post Reply | Private Reply | To 12 | View Replies]

To: Moonman62

Best-of-Thread.

LOL


18 posted on 04/04/2018 1:13:25 PM PDT by sparklite2 (See more at Sparklite Times)
[ Post Reply | Private Reply | To 10 | View Replies]

To: ETL

Damn, a cigarette always ruins the appeal to me...


19 posted on 04/04/2018 1:13:39 PM PDT by Magnum44 (My comprehensive terrorism plan: Hunt them down and kill them)
[ Post Reply | Private Reply | To 11 | View Replies]

To: ETL

That brings back memories. IIRC, back before they had a better handle on what a quasar actually was, quasars were called white holes. Black holes were where matter disappears from the universe and white holes were where matter pours back into this universe from neighboring universes. I loved those old theories!


20 posted on 04/04/2018 1:16:22 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 7 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-32 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson